The Impact of Resistance ExerciSe on Muscle Mass in GlioblaSToma Survivors

Last updated: March 8, 2024
Sponsor: Nova Scotia Health Authority
Overall Status: Active - Enrolling

Phase

N/A

Condition

Brain Cancer

Brain Tumor

Gliomas

Treatment

Circuit-based resistance exercise (CRT)

Clinical Study ID

NCT05116137
NSH RESIST Trial
  • Ages > 18
  • All Genders

Study Summary

Glioblastoma patients are confronted with a debilitating disease associated with a low survival rate and poor quality of life. The goal of this study will be to reach a largely underrepresented population in the exercise literature and explore the role of a tailored circuit-based resistance training program on functional fitness (i.e., ability to carry out tasks of daily living) and associated health outcomes (e.g., quality of life) for GBM patients on active treatment.

Eligibility Criteria

Inclusion

Inclusion Criteria:

  • histologically confirmed diagnosis of either primary or secondary GBM
  • received any dose of DEX
  • Karnofsky Performance Status (KPS) >70
  • English fluency
  • physician approval
  • willingness to travel to Halifax to participate.

Exclusion

Exclusion Criteria:

  • unstable or symptomatic cardiac or pulmonary disease, injury or co-morbid disease thatprecludes ability to safely exercise
  • significant cognitive limitations
  • uncontrolled seizures associated with impaired awareness

Study Design

Total Participants: 24
Treatment Group(s): 1
Primary Treatment: Circuit-based resistance exercise (CRT)
Phase:
Study Start date:
March 01, 2022
Estimated Completion Date:
December 31, 2025

Study Description

PROBLEM: Glioblastoma multiforme (GBM) is the most common brain malignancy accounting for approximately 48% of all brain tumors. GBMs are highly vascular and can cause vasogenic brain edema and mass effect, which can worsen the neurologic symptoms associated with the disease. Corticosteroids (i.e., Dexamethasone; DEX) are the treatment of choice to reduce vasogenic edema and intercranial pressure associated with GBM. However, the use of steroids comes at a cost. High dose steroid therapy and/or long-term use results in muscle myopathy (i.e., muscle weakness) in 10-60% of GBM patients, significantly reducing functional ability as well as quality of life (QOL). Thus, adjuvant therapies are needed to help patients maintain their functional ability and QOL. There is a wealth of evidence to support the use of exercise as an adjuvant therapy to improve functional ability as well as help manage treatment-related symptoms. Resistance training (RT) has been shown to increase muscle mass, strength, and functional ability in aging adults and several cancer populations. While limited, studies in GBM have shown that exercise is safe and feasible for this population and that it can improve functional performance. However, no specific research has been performed to determine whether RT can be successfully used in GBM to prevent or reduce steroid induced muscle myopathy. Therefore, the primary purpose of this study is to establish whether an individualized circuit-based RT program will improve functional fitness for patients on active treatment and receiving steroids.

METHODS: This is a two-armed randomized control trial with repeated measures. Thirty-eight adult (18+ years) patients diagnosed with either primary or secondary GBM who are scheduled to receive standard radiation and concurrent adjuvant Temozolomide chemotherapy post-surgical debulking as well as received any dose of DEX will be recruited through the neuro-oncology clinic and the QEII Cancer Center. Patients will be randomly allocated to a standard of care group (SOC) or SOC+RT group (EX). Those in the SOC group will be advised to maintain an active lifestyle for the 12-week intervention whereas those in the EX group will receive a personalized 12-week circuit-based RT program. This program will consist of 3-4 supervised RT sessions/wk. During each session participants will perform a RT program that is comprised of 3 circuits. Each circuit will include 3 sets of 3 different exercises. Each exercise set will be 1 minute in duration (20 seconds/exercise) with 1 minute of rest between sets. Initial exercise intensity will be light and will increase throughout the program based on the participant's progress. All exercise programs will be designed and supervised by a Clinical Exercise Physiologist (CEP). The primary outcome measure for the study is functional performance which will be assessed using the Short Physical Performance Battery and hand grip strength. Secondary outcome measures will include body composition, aerobic fitness, physical activity levels, general health, QOL, fatigue, and cognitive function. All measures will be assessed pre/post-intervention. Safety and exercise adherence will be assessed throughout the study.

ANALYSIS: Descriptive statistics will be used to describe the population, accrual, program adherence and safety. Outcome data will be analyzed using an intention to treat approach. All participants will be entered into a mixed effects model with participant group assignment (EX, SOC) at randomization and timepoint (pre- and post-test) as fixed factors and participant entered as a random factor. Due to feasibility in recruiting participants in the allotted time, the study will not be fully powered to detect sex-based differences; however, effect sizes associated with the intervention will be calculated and presented separately for each sex.

SIGNIFICANCE: This study will demonstrate the not only is RT safe and feasible for those with GBM, but that it also significantly improves functional status by protecting against myopathy. This will help GBM patients maintain their independence which could lead to marked improvements in QOL.

Connect with a study center

  • QEII Health Sciences Centre

    Halifax, Nova Scotia B3H 2Y9
    Canada

    Site Not Available

Not the study for you?

Let us help you find the best match. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.