A New Spinal Orthosis for Adolescent Idiopathic Scoliosis

Last updated: June 30, 2021
Sponsor: Changhua Christian Hospital
Overall Status: Active - Recruiting

Phase

N/A

Condition

N/A

Treatment

N/A

Clinical Study ID

NCT03825159
CCH-170102
  • Ages 10-17
  • All Genders

Study Summary

The new device with digital technology provides a new avenue to enable clinicians to communicate wirelessly with the imbedded core system such that they can adjust the electrical stimulation parameters and retrieve the temperature data for further compliance analysis. The smart phone and cloud technology can be effectively applied for both security and convenience. The electrical stimulation technology integrated with the total contact spinal orthosis combines the external correction forces on the spinal skeleton from the passive orthosis with the muscle forces at the lateral trunk from the stimulation process. The electrical stimulation is purposely to tone the muscle in order to replace the external mechanical forces gradually. Ultimately, when being weaned off the orthosis, patients may maintain the correction.

Eligibility Criteria

Inclusion

Inclusion Criteria:

  • (1) the range of age should be from ten years old to seventeen years old and (2) theCobb angle should be from 20°to 45°.

Exclusion

Exclusion Criteria:

  • (1)not primary idiopathic scoliosis (2)Unable to wear the all-day brace

Study Design

Total Participants: 60
Study Start date:
February 01, 2019
Estimated Completion Date:
January 31, 2023

Study Description

Spinal orthosis is an option to treat Adolescent Idiopathic Scoliosis (AIS) and is the most commonly used among conservative treatment. According to Scoliosis Research Society (SRS), orthotic treatment is indicated for AIS patients with curves greater than 25˚ but smaller than 45˚. However, the in-brace correction is hardly maintained and the effectiveness of orthotic treatment is limited, which has been an impetus to develop a more effective method for AIS patients to fulfill the unmet need. In order the orthosis is effective, biomechanical intervention and the patient compliance are two key factors. The purpose of this two-year project is to develop a new spinal orthosis in which an integrated system of electric surface stimulation and heat sensing is imbedded such that the AIS will be effectively treated with the mechanical orthosis plus a nocturnal use of electrical stimulation. In addition to the already stellar device, a totally new concept of spine erectability is proposed to provide evidence that can manifest the unique value of orthotic treatment as opposed to surgery. It is hypothesized that the new spinal orthosis would not only reduce the Cobb angle and apical rotation but also would strengthen the spine erectability in AIS patients. The new device with digital technology provides a new avenue to enable clinicians to communicate wirelessly with the imbedded core system such that they can adjust the electrical stimulation parameters and retrieve the temperature data for further compliance analysis. The smart phone and cloud technology can be effectively applied for both security and convenience. The electrical stimulation technology integrated with the total contact spinal orthosis combines the external correction forces on the spinal skeleton from the passive orthosis with the muscle forces at the lateral trunk from the stimulation process. The electrical stimulation is purposely to tone the muscle in order to replace the external mechanical forces gradually. Ultimately, when being weaned off the orthosis, patients may maintain the correction. With the spinal orthosis, the applied current in stimulation process would be reduced and the skin irritation would too. First year, there will be three tasks. An instrument will be developed for clinicians to assess the applicability of electrical surface stimulation to each AIS patient. System integration of the spinal orthosis with electrical surface stimulation and heat sensing will be accomplished. Clinical study of the effectiveness of passive spinal orthoses on 30 AIS subjects as a control group, where the Cobb angle, apical rotation and spine erectability will be measured before treatment and after. Second year, another 30 AIS patients will be recruited; the applicability of electrical surface stimulation will be assessed; and the new spinal orthosis will be applied to the experiment group. The Cobb angle, apical rotation and spine erectability will be measured before treatment and after for each subject. Independent t test will be carried out for the two groups to test the hypothesis.

Connect with a study center

  • Changhua Christian Hospital Taiwan

    Changhua, 500
    Taiwan

    Active - Recruiting

Not the study for you?

Let us help you find the best match. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.