Machine Learning Model to Predict HOLS and Mortality After Discharge in Hospitalized Oncologic Patients (PLANTOLOGY)

  • End date
    Mar 15, 2024
  • participants needed
  • sponsor
    Vall d'Hebron Institute of Oncology
Updated on 7 October 2022
primary cancer


The study aims to understand which are the most relevant parameters at admission which may allow to predict the hospital length of stay (HOLS) and mortality after discharge of oncologic hospitalized patients.

This is the first multicentric prospective observational study that tries to understand the complexity of the hospitalized oncologic patients. A comprehensive analysis will be performed with the help of the nutrition, nursery, internal medicine and oncology teams.



Cancer is the second leading cause of death worldwide and is responsible for about 18.1 million new cases and 9.6 million deaths in 2018 alone according to the International Agency for Research on Cancer. Cancer is anticipated to rank as the leading cause of death and the most important barrier to increasing life expectancy in every country of the world in the mid-21st century1. The economic impact of cancer is significant. The annual economic cost of cancer in 2010 was estimated at approximately US$ 1.16 trillion. The reasons are complex but both cancer incidence and mortality are increasing worldwide due to aging and increasing risk factors for cancer, several of which are associated with socioeconomic development. Cancer will probably soon reach the top leading cause of death due to the rapid population growth and the declines in mortality rates by stroke or coronary heart disease in many developed countries.

Cancer patients often require inpatient care due to treatment toxicities, complications from cancer such as thrombosis, illness not related to the disease itself or terminally ill patients. Among these individuals, their treatment should balance prolongation of survival and maximization of the quality of remaining life. However, hospitalization is a stressful event for individuals with advanced cancer and their caregivers. Hospitalization often antagonizes these goals, contributing to the high cost of cancer care, worsens survival, and is increasingly recognized as poor-quality cancer care. Thus, interventions that reduce unnecessary hospitalizations, or shorten them, will likely improve quality of life and reduce costs.

Some studies relate malnutrition, which presents a marked sarcopenia and loss of lean mass, with prolonged hospitalization, reduced response to treatment, a worse overall survival and impaired quality of life. A study published in 2007 found that lung cancer patients had a longer hospitalization and required inpatient hospital treatment more frequently than any other type of tumor. Moreover, in the surgical setting there have been studies linking preoperative opioid usage and increased opioid doses with increased length of stay. Based on this data, there have been protocols developed like the ERAS (Enhanced recovery after surgery) applied first to colorectal cancer and now being tested in other settings like head and neck and gynecologic tumors, showing that it is possible to reduce opioid use with good pain control and a statistically significant shorter average length of stay.

Prognostic factors for oncologic patients after surgery or curative systemic treatment have been described, but there is no solid evidence on which combination of parameters predict mortality after hospitalization of metastatic cancer patients under active treatment. A potential solution to improve this scenario might be nutritional support to malnourished cancer patients that also has proven to be effective in shorten hospital stay and improve survival, or community based palliative care interventions that are proven to improve quality of life and reduce costs of terminally ill patients. Thus, a prognostic tool would be useful to help physicians adjust medical interventions for hospitalized cancer patients.

To the best of our knowledge, this is the first study that examines independent clinical, psychological, nutritional status, and laboratory characteristics of oncologic patients in order to grasp a comprehensive picture of what factors play a role in the length of stay, mortality, and quality of life.

MEANING The investigators pretend with this work to fill a gap of knowledge in the oncology field through a prospective study. The investigators would like to measure the effect of hospitalization on oncologic patients after discharge and how clinical and laboratory parameters at admission may be able to predict HOLS and 30-day mortality after discharge. The investigators would also like to validate the different scales already published to assess nutritional status, psychological status, quality of life or prediction of rehospitalization for oncologic patients in all-in-one study.

This study will hopefully be able to develop a predictive tool at admission to help physicians adjust medical interventions and detect possible actions that will need to be implemented during hospitalization in order to improve the overall survival and quality of life of our patients.

Condition Solid Tumor, Nutrition Related Neoplasm/Cancer, Comorbidities and Coexisting Conditions, Mental Status Change, Artificial Intelligence, Oncology, Tumor, Quality of Life
Clinical Study IdentifierNCT05534178
SponsorVall d'Hebron Institute of Oncology
Last Modified on7 October 2022


Yes No Not Sure

Inclusion Criteria

≥18 years-old
Histological cancer confirmation
Hospitalization in oncology ward

Exclusion Criteria

<18 years-old
Not histological malignancy confirmed
Less than 24 hours in the hospital
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note