Clinical Evaluation of Reverse Versus Anatomic Shoulder Arthroplasty Techniques in the Treatment of Osteoarthritis (CERVASA)

  • STATUS
    Recruiting
  • End date
    May 30, 2025
  • participants needed
    40
  • sponsor
    University of Alberta
Updated on 4 October 2022

Summary

Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people worldwide and it is common in an aging population. Surgical shoulder replacement (arthroplasty) is typically considered when non-surgical measures, such as physiotherapy or medication, have failed. There are two commonly performed surgical replacement procedures in patients who have advanced shoulder OA, and are 65 years of age and older: "Total Shoulder replacement or Arthroplasty (TSA)" and "Reverse Total Shoulder Arthroplasty (RTSA)".

Few studies have compared the two procedures. Surgeons face uncertainty regarding which procedure to perform in patients 65 years of age and older. This pilot Randomized Controlled Trial (RCT) will compare the "TSA" and "RTSA" procedures, in patients 65 years of age and older. Participants will be assigned at random, (like flipping a coin), to one of the two groups (TSA or RTSA). The overall goal of this pilot study is to determine which procedure produces better functional and quality of life outcomes with fewer complications within the first 12-months after surgery. Moreover, pilot data will help determining the feasibility of conducting a larger trial comparing TSA versus RTSA surgical management in 65 years of age and older participants with advanced shoulder OA.

Description

  1. Statement of objectives

Primary objective: To compare clinical and health related quality of life (HRQL) outcomes of Total Shoulder Arthroplasty (TSA) or Reverse Total Shoulder Arthroplasty (RTSA) management in 65 years of age and older patients with advanced shoulder osteoarthristis (OA) over the first 12-months post-surgery.

Secondary objective: To determine the feasibility of conducting a definitive randomized control trial (RCT) comparing TSA versus RTSA surgical management in 65 years of age and older patients with advanced shoulder OA.

2. Background, Rationale, and Present state of Knowledge

Shoulder OA is common in aging population and may substantially impact quality of life.1-3 Seniors older than 65 years may surpass 2 billion by 20504 increasing the impact of chronic conditions such as OA on both health services and society.5 Patients with OA who do not respond to non-operative management usually require shoulder arthroplasty such as TSA and RTSA.3

TSA is considered the gold standard treatment for younger patients with advanced shoulder OA, intact rotator cuff and preserved glenoid bone stock.6 However, for patients older than age 65 years with an intact rotator cuff (RC), optimal management is unclear. Even though RC muscles may be preserved at time of TSA, RC pathology increases with age.9 Further, RC dysfunction has been linked to increased numbers of TSA failures.10-12 Young et al.10 found that secondary RC dysfunction developed in a significant number of participants undergoing TSA and was associated with worse clinical and radiographic outcomes.10 Melis et al.11 reported 65% of patients undergoing revision TSA had associated RC tears at time of revision surgery. Chronic secondary RC pathology is seen in 55% of patients who retained their implants after TSA for over 15 years.12 The available evidence regarding outcomes after TSA compared to RTSA is mostly based on non-randomized cohort studies and may pose some challenges in interpreting the data, due to variation in patient characteristics and surgeon preference.

Given the lack of consensus on optimal management, and conflicting, low quality evidence reports among patients older than 65 years with advanced OA, this pilot study will compare clinical and HRQL outcomes of TSA and RTSA surgical management in 65-79 year old participants with advanced shoulder OA over the first 6-months post-surgery. Secondarily, we will determine the feasibility of conducting a definitive RCT in this population.

3. The Proposed Trial Design: Parallel-arm, double-blinded, randomized clinical trial.

Enrollment Procedures: Surgeons will screen potential participants. The Research Associates (RAs) will discuss the study in detail and obtain informed consent.

Baseline Evaluation: The RAs will measure bilateral shoulder range of motion (ROM) using a goniometer, bilateral shoulder strength using a dynamometer, and collect Constant score measurements. Participants will complete the following HRQL questionnaires: Western Ontario Osteoarthritis of the Shoulder (WOOS), Subjective Shoulder Value (SSV), The American Shoulder and Elbow Surgeon's (ASES) questionnaire, and EuroQol EQ-5D-5L quality of life questionnaire. The participant will also provide socio-demographics (e.g., age, sex, height, weight, handedness, smoking status, recreational sports, symptom duration, type of onset [insidious / traumatic]), Visual Analogue Scale (VAS) for pain and current medications. The surgeon will review pre-operative CT scans to determine rotator cuff muscle quality.

Randomization: Participants will be randomized to either Group A (TSA) or Group B (RTSA) preoperatively; participants will be blinded to group allocation. The randomization sequence will be computer-generated in uneven blocks with a 1:1 ratio. The surgeons will use a Research Electronic Data Capture (REDCap) software to randomize the participant. REDCap is password protected and only accessibly for research personnel. The RAs will not have access to the randomization information in REDCap which will maintain blinding to participant group allocation.

Participant Management:

Post-operative study evaluations will occur at:

• 6 weeks, 3-, 6- and 12-months: RAs will measure bilateral shoulder ROM and collect Constant data. Participants will fill the following HRQL questionnaires: WOOS, SSV, ASES, and EuroQol EQ-5D-5L as well as VAS for pain and current medications. At 6- and 12-months, bilateral shoulder strength will also be collected. Surgeons will assess participants for complications and/or adverse events.

Sample Size: For this pilot trial, 40 participants (20/group) will allow us to assess participant recruitment and retention rates. We will also refine our selection criteria as necessary for the definitive RCT. This pilot evaluation will provide for calculation of the sample size for the definitive RCT based on confirmation of the primary outcome measure (WOOS). Although 40 participants will likely be inadequate to detect significant group differences, it should be adequate to determine if previously established minimal clinically important difference (MCID) occur in clinical outcomes between groups.

Statistical Analysis:

Primary: Our primary objective is to compare clinical and HRQL outcomes of TSA and RTSA surgical managements in 65 years of age and older participants with advanced shoulder OA over the 12-months post-surgery. Statistical analysis will be performed using Intention-to-Treat with all outcomes attributed to the assigned group. Descriptive statistics will be used for group comparisons with independent t-tests for continuous and Chi-square tests for categorical variables at baseline. Linear Mixed Modeling (LMM), adjusted for age and sex, will compare outcomes between groups over the 12-months evaluation period. The level of significance will be set at α=0.05. Statistical analysis will use the following software: SPSS version 25.0 or SAS version 9.4.

Secondary: Descriptive analysis will assist us in refining eligibility criteria, recruitment/retention rates and study timelines prior to undertaking a large scale RCT.

Recruitment, enrollment and retention rates: All 65 years of age and older patients with advanced shoulder OA presenting at the recruiting sites will be screened so that eligibility, and recruitment rates can be assessed; including the proportion of patients 1) willing to participate and 2) appropriate for randomization. We will also assess retention rates at the end of study follow-up and reasons for losses to follow-up.

Sample Size Calculation: The intervention analysis will also allow us to determine if we should perform a superiority or inferiority RCT. If there are no MCID detected in the pilot study (expected), the definitive RCT will be powered as a non-inferiority trial (i.e. similar clinical outcomes can be achieved with both surgical management (TSA and RTSA) in this age group. If MCID are found in clinical measures, the definitive RCT will be powered as a superiority trial (e.g. RTSA is better than TSA surgical management).

Details
Condition Shoulder Osteoarthritis
Treatment Reverse Total Shoulder Arthroplasty (RTSA), Total Shoulder Arthroplasty (TSA)
Clinical Study IdentifierNCT05395819
SponsorUniversity of Alberta
Last Modified on4 October 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Patients who have failed standard non-surgical management of their shoulder osteoarthritis who would benefit from a shoulder arthroplasty. Failed medical management will be defined as persistent pain and disability despite adequate standard non-operative management for 6 months. Medical management will be defined as
The use of drugs including analgesics and non-steroidal anti-inflammatory drugs
Physiotherapy consisting of stretching, strengthening and local modalities (ultrasound, cryotherapy, etc.)
Activity modification
Imaging, and intra-operative findings confirming advanced gleno-humeral cartilage loss
Patients may present with a glenoid deficiency and >15 degrees of retroversion
65 years of age and older

Exclusion Criteria

Active joint or systemic infection
Rotator cuff arthropathy
Need for an augmented glenoid component or a bone graft to correct version to within 10 degrees of neutral
Retroversion cannot be surgically corrected to within 10 degrees of neutral with a "high- side" ream technique
Significant muscle paralysis
Charcot's arthropathy
Major medical illness (life expectancy less than 1 year or unacceptably high operative risk)
Active Workers Compensation Board (WCB) claim
Unable to understand the consent form/process
Psychiatric illness that precludes informed consent
Unwilling to be followed for the duration of the study
History of previous shoulder surgery on affected side
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note