The Role of Meningeal Lymphatic Vessels in the Absorption of Chronic Subdural Hematoma and Its Injury Mechanism

  • STATUS
    Recruiting
  • End date
    Dec 20, 2023
  • participants needed
    60
  • sponsor
    Second Affiliated Hospital, School of Medicine, Zhejiang University
Updated on 7 July 2022
Accepts healthy volunteers

Summary

Chronic subdural hematoma (CSDH) is a very common hemorrhagic disease of the nervous system, accounting for about 10% of hemorrhagic strokes. The incidence rate of elderly people over 65 years old is 58.1/100,000, and the incidence rate is increasing year by year, and it may reach 121/100,000 by 2030. At present, the specific pathogenesis of CSDH is still unclear. Although it has been clinically confirmed that a part of CSDH can be absorbed by itself, and some drugs such as atorvastatin can speed up the process, surgical treatments such as cranial craniotomy or cranial drilling hematoma removal are still the only options for patients with CSDH.

Lymphatic circulation spreads throughout most tissues of the human body, assists in removing metabolic wastes in the interstitium, maintains body fluid homeostasis, and plays a role in immune response and immune surveillance. For a long time, the central nervous system has been considered as an immune-privileged organ, that is, the central nervous system does not have the presence of the lymphatic system. Until 2015, Louveau et al. used immunofluorescence staining and other techniques to find functional lymphatic ducts adjacent to the dural venous sinuses in the mouse brain when looking for the channels for T cells to enter and leave the meninges, confirming the first intracranial meningeal lymphatic vessels. (mLVs), and found that mLVs express the classic markers of lymphatic endothelial cells (LECs), namely VEGFR3, prostate homeobox 1 (PROX 1), podoplanin, lymphatic endothelial markers transparent Ronidase receptor-1 (LYVE-1), etc. Relevant studies have confirmed that meningeal lymphatic vessels can drain interstitial fluid (ISF), macromolecular substances and immune cells out of the skull, providing a new drainage pathway for the excretion of metabolic waste from the central nervous system. Subsequent studies have confirmed that mLV is involved in the pathophysiological process of a series of neurological diseases such as Alzheimer's disease (AD), traumatic brain injury (TBI), and subarachnoid hemorrhage (SAH). This phenomenon suggests that mLVs play an important role in central nervous system diseases.

Description

Chronic subdural hematoma (CSDH) is a very common hemorrhagic disease of the nervous system, accounting for about 10% of hemorrhagic strokes. The incidence rate of elderly people over 65 years old is 58.1/100,000, and the incidence rate is increasing year by year, and it may reach 121/100,000 by 2030. At present, the specific pathogenesis of CSDH is still unclear. Although it has been clinically confirmed that a part of CSDH can be absorbed by itself, and some drugs such as atorvastatin can speed up the process, surgical treatments such as cranial craniotomy or cranial drilling hematoma removal are still the only options for patients with CSDH. However, these surgical methods have a high recurrence rate of hematoma and the incidence of surgery-related complications, which brings a huge burden to the patient's family and society. Despite the presence of a large number of inflammatory cytokines in the CSDH content, only a minority of patients exhibited systemic inflammatory responses such as fever and increased white blood cell count during hematoma resorption. On the contrary, more CSDH patients showed a certain degree of neurological deficit symptoms, such as hemiplegia of one limb and cognitive function decline. These clinical phenomena have stimulated thinking about how CSDH is drained. If the hematoma is absorbed through the vascular system, why is no corresponding inflammatory response or clinical symptoms observed in CSDH patients. In addition, the cerebrospinal fluid (CSF) of patients with CSDH was clear and the cell count was within the normal range, indicating that CSDH did not flow into the CSF. Therefore, further exploring the drainage pathway of CSDH, understanding the absorption process and recurrence mechanism of CSDH, and developing new effective treatment methods are important issues faced by neurosurgery clinicians.

Lymphatic circulation spreads throughout most tissues of the human body, assists in removing metabolic wastes in the interstitium, maintains body fluid homeostasis, and plays a role in immune response and immune surveillance. For a long time, the central nervous system has been considered as an immune-privileged organ, that is, the central nervous system does not have the presence of the lymphatic system. Until 2015, Louveau et al. used immunofluorescence staining and other techniques to find functional lymphatic ducts adjacent to the dural venous sinuses in the mouse brain when looking for the channels for T cells to enter and leave the meninges, confirming the first intracranial meningeal lymphatic vessels. (mLVs), and found that mLVs express the classic markers of lymphatic endothelial cells (LECs), namely VEGFR3, prostate homeobox 1 (PROX 1), podoplanin, lymphatic endothelial markers transparent Ronidase receptor-1 (LYVE-1), etc. Relevant studies have confirmed that meningeal lymphatic vessels can drain interstitial fluid (ISF), macromolecular substances and immune cells out of the skull, providing a new drainage pathway for the excretion of metabolic waste from the central nervous system. Subsequent studies have confirmed that mLV is involved in the pathophysiological process of a series of neurological diseases such as Alzheimer's disease (AD), traumatic brain injury (TBI), and subarachnoid hemorrhage (SAH). This phenomenon suggests that mLVs play an important role in central nervous system diseases.

Details
Condition Hematoma, Subdural, Chronic
Treatment subdural hematoma burr hole drainage, drug conservative treatment
Clinical Study IdentifierNCT05426889
SponsorSecond Affiliated Hospital, School of Medicine, Zhejiang University
Last Modified on7 July 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Clinical diagnosis chronic subdural hematoma
Hematoma thickness greater than 10mm on imaging

Exclusion Criteria

In patients with chronic subdural hematoma, only head CT examination was performed
There was previous brain injury (stroke, cerebral hemorrhage, etc., leaving relevant chronic changes on CT)
Imaging data was lost and the onset of CSDH was accompanied by severe comorbidity disease patients
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note