Investigating the Association Between Microbiota and Esophageal/Oropharyngeal Cancer

  • STATUS
    Recruiting
  • End date
    Feb 14, 2024
  • participants needed
    60
  • sponsor
    National Cheng-Kung University Hospital
Updated on 4 April 2023
oropharyngeal
esophagus cancer
carcinoma of oropharynx
Accepts healthy volunteers

Summary

Background: Esophageal cancer commonly occurs in middle-aged man. It is ranked to the 6th common cancer and 5th cancer-related death in Taiwanese male, and sometimes co-exist with oropharyngeal cancer, which impacts our national economics and productivity a lot. To improve the prognosis of esophageal cancer, we should contribute to early diagnosis and improved treatment of the disease. Recent studies showed oral and esophageal dysbiosis may lead to oropharyngeal and esophageal cancer.

Aim: To investigate whether oral microbiota is similar to esophageal microbiota. To investigate whether oral microbiota can be a non-invasive biomarker of oropharyngeal cancer, esophageal cancer, synchronous cancer and chemoradiation resistance. And whether probiotic supplement can improve oral/esophageal dysbiosis in order to prevent esophageal cancer.

Study design: This study compares the oral/esophageal microbiota composition between oropharyngeal cancer cases, esophageal cancer cases, synchronous cancer cases and non-cancer controls. In addition, the link between oral and esophageal microbiota will be explored. The study will identify the microbiota related with esophageal cancer development. We will also validate the effect of probiotic supplementation on improving oral/esophageal dysbiosis.

Expected result and significance: Examination of oral microbiota has the potential to become a non-invasive tool for oropharyngeal cancer, esophageal cancer, and synchronous cancer. Probiotic supplementation has the potential to improve oral dysbiosis.

Description

Esophageal cancer is one of the most common gastrointestinal malignant diseases worldwide with an estimated 456,000 incident cases annually. Esophageal cancer has a poor prognosis and high mortality rate. The 5-year survival rate is around 15%-25%. The treatment options of esophageal cancer can be divided into curative treatment and palliative treatment, while endoscopy, surgery and chemoradiotherapy were involved. However, 60-70% patients diagnosed with esophageal cancer are not eligible for curative treatment. In these patients, chemoradiotherapy is the standard for unresectable esophageal cancer, but the treatment outcome remains poor. In the literatures, the complete response rate of chemoradiotherapy in advanced esophageal cancer was about 20%, and the 2-year overall survival rate was 40%. Therefore, early detection and prediction of esophageal cancer are needed. Besides, the inconsistency of treatment effect of chemoradiotherapy may indicate some differences of esophageal cancer microenvironment among the patients. Finding out the affecting factors of microenvironment may help the decision making of treatment options and the prediction of disease prognosis. Furthermore, if we can change the affecting factors in microenvironment, we may be able to prevent the esophageal cancer formation or progression.

Esophageal tumor initiation is associated with environmental exposures, chronic inflammation, and immune cells. Several genetic and environmental factors play key roles in the formation and progression of esophageal cancer. Refluxed gastric and bile acids induce chronic inflammation and the development of intestinal metaplasia (Barrett's esophagus), which is the precursor lesion to esophageal adenocarcinoma. Toxic agent like tobacco and alcohol can cause direct esophageal injury and production of reactive oxygen species (ROS). ROS production causes direct DNA damage and tumor-initiating mutations. Besides, some literatures had reported the possible correlation with microbiota and cancer formation. Commensal bacteria (the microbiota) normally live in the gastrointestinal tract with host cell. Disruption of the relationship (dysbiosis) can influence the metabolism, tissue development, and immune response, which may cause damage to epithelial barriers, inflammation, and inducing DNA and pro-oncogenic signaling, leading to carcinogenesis in the gastrointestinal tract. The role of microbiota in the esophagus has not been widely investigated. Increasing of gram-negative bacteria increases the production of lipopolysaccharide (LPS), leading to inflammation and increased gastric reflux. The gut microbiota is associated with nutrition, the immune system, and defense of the host. It produces short chain fatty acids via anaerobic fermentation of dietary fibers in the intestine. Compared with healthy individuals, the abundance of short chain fatty acids -producing bacteria decreased and the abundance of lipopolysaccharide (LPS) -producing bacteria increased in esophageal cancer patients. Butyrate, one of the short chain fatty acids, decreases LPS-induced cytokine expression and NF-κB activation in lamina propria mononuclear cells. Esophageal microbiota theoretically plays a role in esophageal carcinogenesis.

Esophageal cancer is composed of esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC). In esophageal adenocarcinoma, a decrease of Firmicutes, and an increase of Proteobacteria, Lactobacillus fermentum, and Tannerella forsythia have been reported. In esophageal squamous cell carcinoma, a reduction of Streptococcus species and an increase of Fusobacterium nucleatum and Porphyromonas gingivalis were observed. In Taiwan, patients with primary oropharyngeal cancer had ten times the risk of second esophageal cancer compared to the general population, and vice versa. Some specific bacteria may be associated with the co-existence of oropharyngeal cancer and esophageal cancer. However, diet is one of the most potent factors in determining microbiome integrity. Owing to the dietary difference between easterners and westerners, the dominant microbiota affecting esophageal cancer may be different. Finding out the esophageal cancer-associated specific bacteria of microbiota in Taiwan is important for further research and application for our patients.

Previously, some microorganisms could not be cultured, which would make the microbiota detection incomplete. Nowadays, 16S ribosomal RNA (16S rRNA) sequences had replaced the culture methods in detection of microbiota. In our study, we aim to compare the microbiota among healthy individuals, patients with esophageal cancer, oropharyngeal cancer, and concurrent esophageal cancer with oropharyngeal cancer in Taiwan. Through the comparison, we may find the potential risky microbiota for cancer formation or progression in Taiwan.

Details
Condition Microbial Colonization, Esophageal Cancer, Oropharyngeal Neoplasms, Synchronous Neoplasm
Treatment Oral swab test
Clinical Study IdentifierNCT05412628
SponsorNational Cheng-Kung University Hospital
Last Modified on4 April 2023

Eligibility

Yes No Not Sure

Inclusion Criteria

Eligible participants included patients aged ≥ 20 years with oropharyngeal cancer, esophageal cancer, or dyspeptic patients without cancer

Exclusion Criteria

Patients with other cancer than esophageal cancer or oropharyngeal cancer
Patients with bleeding tendency, such as platelet < 50k, PTinr > 2, or using anti-coagulants
Patients with use of antibiotics within the past 2 weeks
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note