Ultrasonographic Assessement Of Diaphragm In Neuromuscular Diseases In Pediatric Patients

  • STATUS
    Recruiting
  • End date
    May 13, 2023
  • participants needed
    40
  • sponsor
    Sohag University
Updated on 6 June 2022

Summary

The diaphragm is the main muscle of respiration during resting breathing (1), and is formed by two muscles with dual innervation, joined by a central tendon. When it is contracted, the caudal movement increases the volume of the rib cage, generating the negative pressure necessary for inspiratory flow (2). When respiratory demands are increased or diaphragm function is impaired, rib cage muscles and expiratory muscles are progressively recruited. In some patients with diaphragm dysfunction, this compensation is associated with minimal or no respiratory symptoms. In other patients, this compensation is associated with significant respiratory symptoms. Early diagnosis of diaphragmatic dysfunction is essential, because it may be responsive to therapeutic intervention (3). The ultimate causes of diaphragmatic dysfunction can be broadly grouped into three major categories: disorders of central nervous system or peripheral neurons, disorders of the neuromuscular junction and disorders of the contractile machinery of the diaphragm itself (4). So In summary, motion and contractile force of the diaphragm may be affected by pathological alterations of the following anatomical structures:

  • - Central nervous system
  • - Phrenic nerve
  • - Neuromuscular junction
  • - Diaphragm muscle
  • - Thoracic cage
  • - Upper abdomen In patients on mechanical ventilation, the positive end expiratory pressure (PEEP) level also decrease diaphragmatic motion by increasing the end expiratory lung volume and thereby lowering the diaphragmatic dome at the end of expiration (3).

Diaphragm muscle dysfunction is increasingly recognized as an important element of several diseases including neuromuscular diseases leading to a restrictive respiratory pattern (1). The assessment of respiratory muscle function is of paramount interest in patients with neuromuscular disorders. In patients with neuromuscular diseases, respiratory symptoms are subtle and usually appear late in the clinical course of the disease, partly because of the limited mobility of patients due to peripheral muscle weakness, except in the case of acute respiratory failure due to infection. Clinical presentation is quite variable in cases of diaphragmatic failure. Orthopnea may be present and paradoxical abdominal motion may be observed during inspiration, with the abdomen moving inward while the rib cage expands (3). Different structural and functional techniques are available for evaluating the diaphragm. Each technique has its strengths and weaknesses (5). Imaging of respiratory muscles was divided into static and dynamic techniques. Static techniques comprise chest radiography, B-mode (brightness mode) ultrasound, CT and MRI, and are used to assess the position and thickness of the diaphragm and the other respiratory muscles. Dynamic techniques include fluoroscopy, M-mode (motion mode) ultrasound and MRI, used to assess diaphragm motion in one or more directions (6). The recent development of diaphragmatic ultrasound has revolutionized diaphragm evaluation (2). Diaphragm ultrasonography was first described in the late 1960s as a means to determine position and size of supra- and subphrenic mass lesions, and to assess the motion and contour of the diaphragm (1). Two decades later, Wait et al, developed a technique to measure diaphragm thickness based on ultrasonography. Later on the investigators reported a close correlation between diaphragm thickness measured in cadavers using ultrasound imaging and thickness measured with a ruler (7). it has been shown to be similar in accuracy to most other imaging modalities for diaphragm assessment (5), as it can be used to assess bilateral diaphragmatic morphology and function in real time, permitting follow-up without exposure to radiation. It is, moreover, affordable and ubiquitous. (2). First developed in intensive care, mainly for weaning from mechanical ventilation, its use is now extending to pulmonology. Different measurements are described such as diaphragmatic excursion, diaphragmatic thickness and diaphragmatic thickening fraction (8). US measurements of diaphragm muscle thickness and thickening with inspiration have been shown to be superior to phrenic nerve conduction studies (NCS), chest radiographs, and fluoroscopy for detection of neuromuscular disease affecting the diaphragm. The main use in pulmonology is for the respiratory evaluation of patients with neuromuscular diseases, for the search of isolated diaphragmatic impairment and for patients with chronic obstructive lung diseases. Numerous studies are in progress to better determine the role of diaphragmatic ultrasound (5).

Details
Condition Ultrasonographic Assessement Of Diaphragm In Neuromuscular Diseases In Pediatric Patients
Treatment ultrasonography
Clinical Study IdentifierNCT05382247
SponsorSohag University
Last Modified on6 June 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Children and adolescents aged 6 months - 14 years, diagnosed with neuromuscular diseases
attending the Pediatric neurology clinic at Sohag University Hospital

Exclusion Criteria

History of abdominal or thoracic surgery that may influence diaphragm motion
Prolonged mechanical ventilation as it may affect diaphragm thickness and motion
Presence of supra or subdiaphragmatic lesion limiting diaphragm motion
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note