Atrial fibrillation is a serious public health issue that affects over 5 million Americans (Miyazaka, Circulation 2006) in whom it may cause skipped beats, dizziness, stroke and even death. Therapy for AF is currently suboptimal, in part because AF represents several disease states of which few have been delineated or used to successfully guide management. This study seeks to clarify this delineation of AF types using machine learning (ML).
This project tests the novel hypothesis that "Machine learning (ML) in AF patients can integrate physiological data across biological scales stratified by labeled outcomes, and use explainability analyses to identify electrical, structural and clinical determinants of ablation outcome in individual patients to guide personalized therapy". We address this hypothesis using a combined computational/clinical approach. The project will recruit 120 patients to address 3 Specific Aims.
Aim 1. To identify components of AF electrograms that indicate depolarization, repolarization or other mechanisms at the tissue level, using ML trained to monophasic action potentials (MAP). For this prospective protocol, we will collect electrograms using a MAP catheter at multiple atrial sites in patients undergoing AF ablation. We will then test if our algorithms developed previously from our registry, can predict MAP timings from AF electrograms.
Aim 2. To identify electrical and structural features of the acute response of AF to ablation near and remote from PVs at the individual heart level using machine learning and biostatistical approaches. For this prospective protocol, we will recruit patients undergoing their standard-of-care ablation and test if an ML classifier developed previously in a registry dataset prospectively predicts acute response to specific ablation strategies.
Aim 3. To identify patients in whom ablation is unsuccessful or successful long-term using ML and biostatistics. For this prospective protocol, we will recruit patients undergoing their standard-of-care ablation and test if an ML classifier developed previously in a registry dataset prospectively predicts 1 year freedom from atrial arrhythmias.
This project is significant because it will establish a deeper understanding of AF and might reveal novel mechanisms of AF maintenance. Our results can be translated directly to practice and may enable the development of better treatment options.
Condition | Atrial Fibrillation, Arrhythmias, Cardiac |
---|---|
Clinical Study Identifier | NCT05371405 |
Sponsor | Stanford University |
Last Modified on | 24 May 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.