This study is designed as a prospective interventional study to evaluate the CogMe system for early detection and prevention of delirium. The study will collect physiological and cognitive measurements to evaluate the ability of the CogMe system to predict and detect delirium and to aid the development of future delirium prevention methods.
Delirium is a syndrome defined as an acute disturbance of both consciousness and cognition that tends to fluctuate over time and is caused by the physiological consequences of a medical condition. It is a common disorder in acute care settings, in internal medicine units, in post-operative patients and the intensive care unit. Delirium is associated with increased mortality, longer hospital stays, long-term cognitive impairment and increased healthcare costs. The pathophysiology of delirium is multifactorial and is not completely understood.
The prevalence of delirium increases with age and is very common in elderly hospitalized patients. In certain departments delirium rates can reach over 40%. However, delirium is underdiagnosed in almost two thirds of cases or misdiagnosed as depression or dementia. Furthermore, it has been previously shown that the diagnosis of delirium is often delayed, and that the recognition and documentation of delirium by physicians and nurses is far from optimal. Early diagnosis of delirium may improve clinical outcome, with shortened duration of symptoms, decreased length of admission and reduced long-term complications.
Clinical studies have demonstrated that delirium may be prevented in up to one-third of cases by multifactored non-pharmacological interventions, yet they can be costly to implement and require specially trained staff members. In addition, they do not usually consider physiological parameters.
Three recent technological advances now provide opportunities for a new delirium prevention approach. First, over the recent years vital signs monitoring with wearable sensors powered by advanced processing algorithms has become technically feasible. This development may provide opportunities for early detection of delirium and for detection of physiological triggers of delirium such as dehydration, infections, and lack of sleep. Second, recent advances in virtual dialogue systems (e.g. Amazon's Alexa or Apple's Siri) provide new and exciting opportunities for automatic patient interaction. Devices with voice or multimodal communication can be used by older patients with little or no experience in modern mobile technology. Lastly, recent progress in digitized data acquisition, computing infrastructure and algorithm development, now allow artificial intelligence and machine learning applications to expand into areas in medicine that were previously thought to be only the province of human experts. The combination of these three data sources can greatly improve current prediction models and allow for earlier and more accurate delirium prediction.
An automated system which could aid with delirium detection and alert clinicians to a possible onset of the syndrome can greatly improve treatment and outcomes for patients. The CogMe system utilizes current technology to provide a holistic and scalable approach for delirium prediction, detection and prevention covering both physiological and cognitive aspects. The system uses wearables for physiological vitals monitoring and communicates with patients by a dedicated tablet app - the CogMe Personal Assistant (PA). In this study, the data collected by the wearables and the CogMe PA, in combination with patient data from the EMR, will be analyzed retrospectively using machine learning techniques (CogMe Data Analytics) to evaluate the ability of the CogMe system to predict and detect delirium.
Condition | Delirium |
---|---|
Treatment | CogMe Personal Assistant (PA) |
Clinical Study Identifier | NCT05311761 |
Sponsor | Rambam Health Care Campus |
Last Modified on | 19 April 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.