Cancer radiation treatment plans that employ lung functional avoidance methods require 3D maps that differentiate regions of healthy lung function from regions of compromised tissue to deliver sufficient dose to the tumor while preserving as much functioning lung as possible. Hyperpolarized xenon-129 MRI can provide maps of ventilatory function and gas exchange to the bloodstream. Improving treatment plans based on this novel imaging modality could reduce risk or severity of radiation pneumonitis and improve post-treatment quality of life.
Customized 3D planning of radiation therapy for lung cancer delivers a lethal dose to the tumor region while avoiding important structures (spine) and organs (esophagus, heart, lungs). Since radiation dose to functioning lung is associated with acute radiation pneumonitis and chronic radiation fibrosis, researchers seek to shift dosage preferentially away from lung regions with highest function. Several lung functional imaging modalities have been investigated (ventilation-perfusion SPECT and PET, 4DCT, hyperpolarized 3He). These studies indicate that regional ventilation is not the optimal biomarker. What is needed is a high-resolution imaging modality, tolerable to patients who have difficulty holding their breath, that delineates regions of full lung function warranting preservation, and also identifies regions whose function is irrevocably gone.
The investigators propose a translational study applying Hyperpolarized Xenon (HXe) MRI to improve lung-health outcomes for lung cancer patients treated with radiation therapy. This study will focus on a patient cohort with significant heterogeneity: new patients with lung cancer and GOLD stage 3+ emphysema as a comorbidity and patients receiving RT for their second (primary) lung cancer. Optimizing radiation therapy treatment plans could provide a statistically significant benefit within a manageably small patient cohort. Maps will delineate three regions of functionality: regions of full function, having both ventilation and gas exchange to blood (where radiation should be reduced), regions where function is irrevocably absent (where radiation dose can be increased), and regions where function may be present or recoverable (where radiation should remain at the normal dose limit). In the first year the investigators will conduct an open-label Phase 1 clinical trial to optimize the hardware and functional imaging protocols, as well as generate and perform targeted RT treatment in a limited number of patients, with safety as the primary endpoint.
Condition | Carcinoma, Non-Small-Cell Lung |
---|---|
Treatment | Hyperpolarized Xenon MRI |
Clinical Study Identifier | NCT05302817 |
Sponsor | Xemed LLC |
Last Modified on | 25 April 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.