this study is aimed to evaluate and compare the pulp response to ACTIVA BioACTIVE Base/Liner and MTA as pulpotomy medication in primary teeth.
Pulpotomy is an endodontic technique that involves amputating the coronal pulp and covering the residual root pulp with a clinically effective pulp medicament that is bactericidal, capable of forming a biological barrier and allows the physiological root resorption until primary tooth exfoliation. In primary dentition, pulpotomy therapy is divided into three types based on the treatment goals: devitalization (mummification), preservation, and regeneration. Formocresol is the benchmark for pulpotomy treatment in primary teeth. Buckley first used it to treat nonvital permanent teeth in 1904, and it later became a common pulpotomy medication for primary teeth primarily because of its superior clinical success and simplicity of use . However, toxicity, mutagenicity, and carcinogenicity issues posed by the possible systemic spreading of FC molecules via the root canals raised concerns on its use ; as a result, a more biocompatible, nontoxic medication was required.
Biocompatible and bioactive materials containing calcium silicate have become increasingly common in paediatric dentistry in recent years because of their properties, which include stimulation of pulp cell regeneration, re - routing of the inflammatory response, and improving the healing ability of the remaining vital pulp . Mineral trioxide aggregate (MTA) was developed and implemented as a root-end filling at Loma Linda University in California, USA, in 1993; its physical and chemical properties were identified by Torabinejad et al ., in 1995. MTA is a chemical compound composed of tricalcium silicate, dicalcium silicate, tricalcium aluminate, calcium sulphate dehydrate, gypsum, and bismuth oxide . It hydrates to form a colloidal gel with a pH of 12.5, equivalent to that of calcium hydroxide . Moreover, it takes 3 to 4 hours to set with a compressive strength of 70 Mpa after setting, which is comparable to Intermediate Restorative Material (IRM) . MTA is a biocompatible substance that seals better than amalgam or zinc oxide eugenol (ZOE) [30-32] also, it retains pulp vitality and induces repair as it comes into contact with dental pulp or peri-radicular tissues. MTA has been thoroughly examined clinically and radiologically, as well as compared to other pulpotomy medicaments, and it has been reported that MTA should be considered the new gold standard for pulp-capping therapy. On the other hand, MTA has some drawbacks, including difficulty in manipulation, a long setting duration, a high cost, poor mechanical properties, poor adhesion to dental tissue and tooth staining .
Several recent calcium silicate-based materials have been developed in order to alleviate MTA's drawbacks. ACTIVA BioACTIVE Base/Liner, a BioACTIVE glass-incorporated light-curable pulp capping material, was recently introduced in 2014 as a "light-cured resin-modified calcium silicate" (RMCS) claiming composite's resilience, aesthetics, and physical properties, as well as improved calcium, phosphate, and fluoride release when compared to glass ionomer . It comprised of a diurethane and methacrylate-based monomer with a modified polyacrylic acid and polybutadiene-modified diurethane dimethacrylate as well as BioACTIVE glass as a filler . ACTIVA has three setting reactions: it cures with low intensity light for 20 seconds per layer and has both glass-ionomer (acid-base reaction) and composite self-cure setting reactions. The bioactivity of ACTIVA BioACTIVE products is dependent on a process in which the material reacts to pH cycles and actively participates in the release and recharging of considerable amounts of calcium, phosphate, and fluoride . Theses mineral components are concerned with promoting the development of mineralized hard tissue also, they promote the creation of a connective apatite layer and the development of a seal at the material-tooth interface .
Condition | Drug Effect |
---|---|
Treatment | pulpotomy procedure and Histological evaluation, Immunohistochemistry Protocol for Fibronectin Antibody, Immunohistochemistry Protocol for Osteopontin Antibody |
Clinical Study Identifier | NCT05300152 |
Sponsor | Suez Canal University |
Last Modified on | 16 June 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.