Effectiveness of a Powered Exoskeleton Combined With FES for Patients With Chronic SCI: a RCT (Ekso-FES)

  • End date
    Dec 31, 2025
  • participants needed
  • sponsor
    Mario Widmer
Updated on 13 May 2022
electrical stimulation
gait training


While there are a number of prospective studies evaluating powered exoskeletons in SCI patients, to date, not a single well-designed, randomized clinical trial has been published. However, there is evidence for beneficial effects of over-ground exoskeleton therapy on walking function post-intervention from a meta-analysis on non-randomized, uncontrolled studies. Functional electrical stimulation (FES), on the other hand, is a common and established method for the rehabilitation of persons with SCI and has been demonstrated to be beneficial in, e.g., improving muscle force, power output and endurance.

Combining FES and overground robotic therapy within the same therapy session could potentially merge and potentiate the effects of each separate treatment, making it a very powerful and efficient therapy method. Up to date, however, comparative studies evaluating benefits of this combined approach (i.e., powered exoskeleton and FES) to robotic therapy without FES are missing.


Paraplegia is a serious event that leads to a complete or partial loss of motor, sensory and vegetative functions. Regaining of gait, balance and mobility are important priorities for persons with a spinal cord injury (SCI). In the last decade the technological development of exoskeletons allowed persons with SCI getting closer to their desired goal. Wearable robotic exoskeletons are motorized orthoses that facilitate untethered standing and walking over ground. Supporting multiple step repetitions while having full weight bearing on the body, these devices represent a task-specific and -oriented training approach for rehabilitation of gait function after SCI. However, in cases where rehabilitation of gait function is not the aim, the need to target secondary health problems associated with SCI like pain, spasticity, bowel and bladder function can still be a rationale for engaging in exoskeleton training.

Another well-established technique for the treatment of such secondary health problems is functional electrical stimulation (FES). FES is a common and established method for the rehabilitation of persons with spinal cord injury. Several studies have documented positive effects of FES like, e.g., avoiding disuse and denervation atrophy, improving muscle force, power output and endurance, changing muscle fibre type, increasing cross sectional area of muscles, increasing muscle mass, activation of nerve sprouting, motor learning and reducing spasticity. In addition, FES has been shown to improve bladder, bowel and sexual function, cardiovascular fitness (by increasing aerobic capacity), reduce body fat mass and prevent and treat pressure ulcers by increasing muscular blood flow. Moreover, FES treatment has also been shown to have an impact on body function by improving lower limb function as well as trunk stability and function.

The power elicited by the muscle through electrical stimulation can be used for locomotion. To do so, undesired limb motion is often restricted by passive orthoses or pedals in order to efficiently use the muscle contraction from the user to safely provide the power for forward propulsion. The usefulness of such systems, however, is often limited due to the rapid initiation of muscle fatigue. This is one reason (amongst others) why hybrid FES-robotic solutions have been developed, which supplement the power produced by electrical stimulation with motorized assistance. This approach reduces the power that needs to be produced by the muscles, allowing for FES application for longer training sessions before fatigue occurs. By doing so, such hybrid powered exoskeletons offer the physiological health benefits similar to FES cycling, while simultaneously enhancing the user's mobility. The addition of FES to a powered exoskeleton also synergistically reduces the motor torques of the device, reducing battery drain and therefore increasing the maximum range of the exoskeleton.

While it sounds perfectly reasonable, from a technical and physiological perspective, to combine powered exoskeletons and FES to such hybrid bionic systems, there is only anecdotal evidence for their clinical usefulness and efficacy in patients with SCI. Here the investigators propose a randomized controlled trial investigating the effect of the combined application of the EksoNR powered exoskeleton (Ekso Bionics, Richmond, CA, USA) and FES (FES RehaMove2, Hasomed, Magdeburg, Germany) compared to Ekso therapy alone on functional outcomes and secondary health parameters.

Condition Spinal Cord Injuries, Gait Disorders, Neurologic
Treatment Ekso (EksoNR, Ekso Bionics), FES (RehaMove2, Hasomed)
Clinical Study IdentifierNCT05187650
SponsorMario Widmer
Last Modified on13 May 2022


Yes No Not Sure

Inclusion Criteria

chronic, incomplete SCI (> 1 year, AIS B-D)
traumatic or non-traumatic lesion
capacity to stand up and perform a 10MWT with or without medical aids
partially wheelchair dependent
intact lower motoneuron on the segmental innervation level of M. glutaeus maximus, Mm. ischiocrurales, M. tibialis anterior and M. quadriceps (to guarantee the stimulability with FES)

Exclusion Criteria

Exoskeleton device related contraindications: > 100 kg body weight; Body height: < 155 cm or > 190 cm; pelvic width: > 46 cm
orthopedic limitations (acute fractures of the lower limb)
heterotrophic ossification
spasticity (modified Ashworth Scale >3)
skin injuries of the lower limbs in areas where the skin has contact with the exoskeleton
Unstable circulation (unable to stand for at least 10 minutes)
acute deep vein thrombosis
pregnancy (tested in women of childbearing age (15 - 49 years))
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note