Disturbances in the hypothalamus communication pathways with other regions in the brain and the periphery may represent a potential link between metabolic and cognitive health. The current project evaluates whether enhancing synaptic plasticity of this pathway can improve weight management, insulin sensitivity, and cognitive functions. In recent studies, we were able to show that the human brain is sensitive to insulin with favorable effects on peripheral metabolism and cognition. These brain regions encompass the hypothalamus and its connections to the striatum and prefrontal cortex. We want to investigate whether it is possible to enhance neuroplasticity of insulin-responsive brain regions to suppress the weight gain trajectory and improve dopamine-dependent cognitive functions in people with a high risk to develop type 2 diabetes. For this purpose, neuroimaging tools using high-definition transcranial direct current stimulation (HD-tDCS) and magnetic resonance imaging (MRI) will be implemented to assess synaptic plasticity of a neural network essential for metabolic and cognitive health.
The overarching aim of the study is to investigate the possibility to enhance neuroplasticity of the hypothalamus network to improve metabolism and dopamine-dependent cognitive functions.
Specific objectives
Participants will receive a thorough screening to obtain body composition by MRI, anthropometric measures, fasting glucose and insulin, indirect calorimetry, and general cognitive functions. Thereafter, participants will participate in three measurement days (separated by approx. one week) to receive a 25 min tDCS stimulation targeting the hypothalamus network in a double-blind cluster-randomized. Participant are randomized on three conditions: sham stimulation, anodal and cathodal stimulation. During the non-invasive brain stimulation, participants will perform a stop-signal task. On each measurement day, structural and functional MRI measurements are performed before and after stimulation. Dopamine-dependent behavior (i.e. reward task) will be assessed during fMRI measurement. Subsequently, participants will receive a breakfast buffet. The caloric intake from fat, carbohydrates and protein will be documented. Subjective feeling of hunger and food craving will be assessed using a visual analogue scale before stimulation, directly after stimulation and after breakfast. Food pictures will be rated on a laptop for taste and healthiness.
Condition | Insulin Resistance, Obesity, Diabetes Type 2 |
---|---|
Treatment | Cathodal transcranial direct current stimulation, Sham transcranial direct current stimulation, Anodal Transcranial Direct Current Stimulation |
Clinical Study Identifier | NCT05228067 |
Sponsor | University Hospital Tuebingen |
Last Modified on | 22 March 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.