Use of Electrophysiological Markers to Predict Post-operative Cognitive Dysfunction

  • STATUS
    Recruiting
  • End date
    Dec 31, 2024
  • participants needed
    100
  • sponsor
    Rambam Health Care Campus
Updated on 2 January 2022
Accepts healthy volunteers

Summary

As the population ages and medical progress is made, many elderly patients that previously would not have been candidates for surgery are now undergoing operations. In this group of older patients, brain dysfunction after anesthesia and surgery, naming post-operative cognitive dysfunction, is well known.

Post-operative cognitive dysfunction (POCD) is a term used to describe subtle changes in cognition, such as memory and executive function. The most commonly seen problems are memory impairment and impaired performance on intellectual tasks. In severe cases, it can lead to inability to perform daily living functions. It was previously found that the presence of cognitive dysfunction 3 months after non-cardiac surgery was associated with increased mortality. The mechanisms leading to cognitive impairment after anesthesia and surgery are not yet fully clear. The risk factors are related to patient characteristics, type of operation and anesthetic management.

The investigators have recently shown that using different electrophysiological markers, they can monitor attention and perception which might be associated with brain frailty and brain injury.

The aims of this proof of concept study are: (i) to find-out whether attention processes might be in association with brain frailty. (ii) to find our whether brain injury which is expressed by interhemispheric synchronization is is associated with POCD; (iii) to find out whether the level of anesthesia, as measured electrophysiological by perception might be linked primary to POCD.

Description

As the population ages and medical progress is made, many elderly patients that previously would not have been candidates for surgery are now undergoing operations. In this group of older patients, brain dysfunction after anesthesia and surgery is well recognized, naming post-operative cognitive dysfunction.

Post-operative cognitive dysfunction (POCD) is a term used to describe subtle changes in cognition, such as memory and executive function. The most commonly seen problems are memory impairment and impaired performance on intellectual tasks. In severe cases, it can lead to inability to perform daily living functions. The reported incidence figures for postoperative cognitive dysfunction vary depending on the group of patients studied, the definition of POCD used, the tests used to establish the diagnosis and their statistical evaluation, the timing of testing, and the choice of control group. The diagnosis of POCD relies on the availability of the neuropsychological tests. In a large prospective multicenter cohort study, it was found that the presence of cognitive dysfunction 3 months after noncardiac surgery was associated with an increased mortality. Furthermore, patients with cognitive decline at 1 week had an increased risk of leaving the labor market prematurely and a higher prevalence of time receiving social transfer payments. The mechanisms leading to cognitive impairment after anesthesia and surgery are not yet fully clear. The risk factors for developing POCD are related to patient characteristics, type of operation and anesthetic management.

Cardiovascular, respiratory, hepatic, and renal insufficiency are all associated with impaired brain performance. It is theoretically obvious that an adequate intraoperative oxygen supply for all vital organs is essential if postoperative cerebral dysfunction is to be avoided. Casai et al found that brain desaturation (rSO2 decrease <75% of baseline) occurred in 40% of elderly patients after noncardiac surgery, and the cerebral desaturation was linked with a high incidence of POCD. A recent systematic review shows that reductions in cerebral oxygen saturation (rSO2) during cardiac surgery may indicate CPB cannula malposition, particularly during aortic surgery. However, only weak evidence links low rSO2 during cardiac surgery to POCD.

POCD is a well-recognized clinical phenomenon of multifactorial origin; emboli, hypoperfusion, inflammation, and patient's preoperative cerebral dysfunction. Meticulous surgical and anesthesiological techniques are important for preventing complications and keeping the risk of POCD to a minimum.

The EEG is an electrophysiological monitoring method used to record electrical activity of the brain, including normal and abnormal activity. In recent years, numerous clinical studies were performed to evaluate whether the use in intraoperative electroencephalography (EEG) to control the depth of anesthesia has any effect on POCD.

Recently it was confirmed that intraoperative neuro-monitoring for depth of anesthesia is associated with a lower incidence of delirium. However it is unrelated to the incidence of POCD. The most common available monitor for depth of anesthesia is the Bispectral index, developed more than 20 years ago. The device's output is based on electroencephalographic (EEG) signals from the frontal lobe (monitors brain activity) in combination with electromyographic (EMG) waves (monitors muscle activity). The BIS produces a number ranging from 0 -100, which matches the patient's level of consciousness (awake, sedated or unconscious) under GA.

Despite its limitations, over-anesthesia as monitored by BIS, was at-least correlative with POD (but not with POCD). Therefore, it is hopeful that an even more precise evaluation of the level of anesthesia will improve POD prediction (and thereby prevention) even further. On the other hand the measure of depth of anesthesia by itself does not provide sufficient prediction for POCD.

The investigators have recently that brain injury is demonstrated by interhemispheric desynchronization, which is recognized by our new algorithm, which monitors electrophysiological markers of attention and of perception. This algorithm was based on a previous set of studies, which showed the ability to decompose the entire multi-electrode EEG/ ERP sample to a superposition of attention and perception processes, spread in space (over the scalp) and time (hundreds of milliseconds). Our algorithm is unique in the ability to extract the needed perceptual and attentional information indicating depth of anesthesia and hemispheric damage (manifested by interhemispheric desynchronization) in real time every 30 seconds and with a minimal electrodes' setup.

The aims of this proof of concept study are: (i) to find-out whether attention processes might be in association with brain frailty. (ii) to find our whether brain injury which is expressed by interhemispheric synchronization is is associated with POCD; (iii) to find out whether the level of anesthesia, as measured electrophysiological by perception might be linked primary to POCD.

Details
Condition Cognitive Dysfunction
Treatment Cognitive assesment using MOCA test
Clinical Study IdentifierNCT04512989
SponsorRambam Health Care Campus
Last Modified on2 January 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Patients 18 years and older undergoing elective cardiac surgery (CABG or valve replacement)

Exclusion Criteria

inability or refusal to provide informed consent
significant visual impairment so that the pictures of the cognitive tests could not be interpreted accurately
profound dementia or aphasia that interfered with the cognitive assessment
inability to speak Hebrew/ Russian or Arabic so that a language barrier was not confused with postoperative cognitive dysfunction
Any previously documented major neurologic or psychiatric dysfunction
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note