Pervasive Sensing and AI in Intelligent ICU

  • End date
    May 25, 2023
  • participants needed
  • sponsor
    University of Florida
Updated on 25 November 2021


Important information related to the visual assessment of patients, such as facial expressions, head and extremity movements, posture, and mobility are captured sporadically by overburdened nurses, or are not captured at all. Consequently, these important visual cues, although associated with critical indices such as physical functioning, pain, delirious state, and impending clinical deterioration, often cannot be incorporated into clinical status. The overall objectives of this project are to sense, quantify, and communicate patients' clinical conditions in an autonomous and precise manner, and develop a pervasive intelligent sensing system that combines deep learning algorithms with continuous data from inertial, color, and depth image sensors for autonomous visual assessment of critically ill patients. The central hypothesis is that deep learning models will be superior to existing acuity clinical scores by predicting acuity in a dynamic, precise, and interpretable manner, using autonomous assessment of pain, emotional distress, and physical function, together with clinical and physiologic data.


The under-assessment of pain is one of the primary barriers to the adequate treatment of pain in critically ill patients, and is associated with many negative outcomes such as chronic pain after discharge, prolonged mechanical ventilation, longer ICU stay, and increased mortality risk. Many ICU patients cannot self-report their pain intensity due to their clinical condition, ventilation devices, and altered consciousness. The monitoring of patients' pain status is yet another task for over-worked nurses, and due to pain's subjective nature, those assessments may vary among care staff. These challenges point to a critical need for developing objective and autonomous pain recognition systems. Delirium is another common complication of patient hospitalization, which is characterized by changes in cognition, activity level, consciousness, and alertness and has rates of up to 80% in surgical patients. The risk factors that have been associated with delirium include age, preexisting cognitive dysfunction, vision and hearing impairment, severe illness, dehydration, electrolyte abnormalities, overmedication, alcohol abuse, and disruptions in sleep patterns. Estimates show that about one third of delirium cases can benefit from drug and non-drug prevention and intervention. However, detecting and predicting pain and delirium is still very limited in practice.

The aim of this study is to evaluate the ability of the investigators' proposed model to leverage accelerometer, environmental, circadian rhythm biomarkers, and video data in autonomously quantifying pain, characterizing functional activities, and delirium status. The Autonomous Delirium Monitoring and Adaptive Prevention (ADAPT) system will use novel pervasive sensing and deep learning techniques to autonomously quantify patients' mobility and circadian dyssynchrony in terms of nightly disruptions, light intensity, and sound pressure level. This will allow for the integration of these risk factors into a dynamic model for predicting delirium trajectories. Commercially available cameras will be used to monitor patients' facial expressions and contextualize patients' actions by providing imaging data to provide additional patient movement information. Commercially available environmental sensors will be used to provide data on illumination, decibel level, and air quality. Patient blood samples will help determine their circadian rhythm and compare and validate the pervasive sensing system's capabilities of autonomously monitoring circadian dyssynchrony. Electronic health record data will also be collected.

Condition Delirium, Critical Illness, Confusion, Pain (Pediatric), Post-Surgical Pain, ache, critically ill, confused, Acute Pain Service, disorientation, Pain
Treatment accelerometer monitoring, Video Monitoring, Noise Level Monitoring, Light Level Monitoring, Air Quality Monitoring, EKG Monitoring, EKG Monitoring, Vitals Monitoring, Biosample Collection, Delirium Motor Subtyping Scale 4 (DMSS-4)
Clinical Study IdentifierNCT05127265
SponsorUniversity of Florida
Last Modified on25 November 2021


Yes No Not Sure

Inclusion Criteria

aged 18 or older
admitted to UF Health Shands Gainesville ICU ward

Exclusion Criteria

under the age of 18
on contact/isolation precautions
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note