Intrinsic Optical Imaging Study to Map Neocortical Seizure in Human Epilepsy Patients

  • STATUS
    Recruiting
  • End date
    Dec 4, 2025
  • participants needed
    40
  • sponsor
    Weill Medical College of Cornell University
Updated on 22 January 2022
neurosurgery
seizure
intractable epilepsy

Summary

The purpose of this study is to develop a technique for the intraoperative identification of human functional and epileptiform cortex using intrinsic signal imaging. The investigators propose that the ability to optically monitor neuronal activity in a large area of cortex in "real-time" will be a more sensitive and time-saving method than the electrical methods currently available. The applications of this technique will not only theoretically increase the safety and efficacy of many of neurosurgical procedures, but will be useful as an investigational tool to study human cortical physiology.

Description

Epilepsy is a disease affecting 1-2% of the population. Currently, the only known cure for epilepsy is surgery, which is much more effective at eliminating seizures arising from the medial temporal lobe compared with the neocortex. The problem with neocortical epilepsy is that the population of neurons underlying each epileptiform discharge varies over time. In addition, the spatial relationship between interictal events and the ictal onset zones, which are critical in defining the region of epileptogenesis, is not well understood and essential to the surgical treatment of epilepsy. Electrophysiological recording methods, although currently the "gold standard" in mapping epilepsy, are inadequate to address these questions based on restrictions due to volume conduction or sampling limitations. Optical recording techniques can overcome many of these limitations by sampling large areas of cortex simultaneously to provide information about blood flow, metabolism and extracellular fluid shifts that are intimately related to excitatory and inhibitory neuronal activity. In fact, optical recordings may actually be more sensitive to certain aspects of epileptic activity than electrophysiologic recordings. The goal will be to translate these findings into the operating room and map human neocortical epilepsy with the same optical techniques. Outcome following surgical resections to treat neocortical epilepsy will be correlated with the optical maps to determine the utility of intrinsic signal imaging in guiding brain surgery. These experiments will set the groundwork for implementing optical recordings in general clinical practice as a novel technique for mapping and predicting human seizures.

Details
Condition Epilepsy
Treatment Intrinsic signal imaging of human cortex
Clinical Study IdentifierNCT00195052
SponsorWeill Medical College of Cornell University
Last Modified on22 January 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Medically intractable epilepsy
Subjects undergoing neurosurgical operations requiring cortical mapping

Exclusion Criteria

Subjects NOT undergoing neurosurgical operations requiring cortical mapping
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

0/250

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note