Development and Application of a Novel Digital Array PCR for Acute Myeloid Leukemia (AML)

  • STATUS
    Recruiting
  • End date
    May 28, 2023
  • participants needed
    10
  • sponsor
    UNC Lineberger Comprehensive Cancer Center
Updated on 29 June 2022
cancer
remission
cell transplantation

Summary

Purpose: The purpose of this trial is to investigate whether a digital array assay can detect trace amounts of residual leukemia and predict relapse in acute myeloid leukemia (AML) patients in remission who have undergone allogeneic stem cell transplantation (SCT) at the North Carolina Cancer Hospital (NCCH).

Participants: Adult patients (18 years of age or older) with diagnosed AML who are going to undergo stem cell transplant (SCT).

Procedures (methods): A total of 10 eligible subjects will be treated per standard of care with SCT. Peripheral blood and bone marrow aspirate (10 mL each) for digital array assay analysis will be collected along with routine lab draws and bone marrow biopsy procedures prior to SCT. Beginning 1 month after SCT peripheral blood (10 ml) will be collected to assess MRD by digital array assay analysis on a monthly basis for up to 6 months. In addition, bone marrow aspirate will be collected at approximately Month 3 and 6 following SCT for assay analysis. Patient medical records will be reviewed 6 and 12 months after completing their last MRD follow up assessment to confirm survival status, remission status, and gather information related to relapse.

Description

Minimal residual disease (MRD) refers to the presence of cancer cells that are present after therapy and not otherwise detectable by clinical findings, including standard clinical assays and radiographic imaging. Detection of MRD before it becomes clinically detectable provides an opportunity to intervene and optimize treatment, with the possibility of curing more patients. For the above reasons, detection of MRD through evaluation of blood-based biomarkers represents a promising area to improve clinical outcomes in patients with a variety of solid and liquid tumors. In liquid tumors such as acute lymphoblastic leukemia (ALL), MRD assessment is already part of routine clinical practice. MRD is strongly correlated with risk for relapse in ALL, and MRD assessment during and after induction therapy is one of the most informative prognostic markers available. For these reasons the National Comprehensive Cancer Network (NCCN) Guidelines Version 2.2020, indicate that MRD assessment is an "essential component of patient evaluation over the course of sequential therapy" for ALL, and there are >250 references to MRD in the pediatric and adult ALL NCCN Guidelines. In AML, MRD assessment is routinely used in academic medical centers. MRD is also strongly associated with risk of relapse in AML, and MRD status is a strong independent predictor of overall survival after completion of therapy. The AML NCCN Guidelines Version 3.2020, indicate the "undeniable need for monitoring," but further refinements are needed to make MRD monitoring in patients with AML more reliable. In this study we will apply a new highly multiplexed digital PCR technology, digital array PCR (daPCR), for evaluation of MRD in AML that will improve MRD assay reliability while reducing costs and time-to-results.

Currently, methods for MRD assessment in AML include flow cytometry for the detection of aberrant immunophenotypes as well as molecular PCR- and next generation sequencing (NGS)-based assays for detecting recurrent AML-associated genetic abnormalities. Both flow and molecular MRD assessment have much higher sensitivity than morphologic assessment alone, with flow cytometry having a lower limit of detection between 10-4 to 10-5 and molecular methods between 10-3 for NGS methods to 10-5 for PCR-based methods. Each of the current methods have major limitations that prevent broader adoption in AML. Standard NGS-based methods have insufficient sensitivity and high costs. Flow cytometry is a technically difficult method that is challenging to standardize, and a subset of AML cases do not have sufficient evaluable surface markers to allow detection. PCR-based methods can be very sensitive, but each assay currently targets a single recurrent genetic abnormality (e.g., PML/RARA fusion in acute promyelocytic leukemia), and many AML cases do not have genetic abnormalities that are targeted by current clinical assays. In contrast, the daPCR technology we propose to apply in this study provides a high throughput, multiplexed platform (24-96 variants) with unprecedented dynamic range (>108), high ease of use, low cost and rapid turnaround time. Because the daPCR can simultaneously probe for multiple variants, we estimate that our initial assay will have the potential to detect and quantify the abundance of at least one AML associated mutation in ~80% of AML samples. This technological advance would provide a real-world solution to enable frequent, deep monitoring of therapeutic response in patients with AML.

Details
Condition Leukemia, Myeloid, Acute, Minimal Residual Disease
Clinical Study IdentifierNCT04920188
SponsorUNC Lineberger Comprehensive Cancer Center
Last Modified on29 June 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Adult patients (≥18 years of age) diagnosed with AML who are going to undergo stem cell transplant (SCT). These subjects must provide written informed consent to participate
Subjects must have an identified mutation that has been validated on the multiplex daPCR assay

Exclusion Criteria

Adult patients (≥18 years of age) diagnosed with AML who are scheduled to undergo SCT at the NCCH who do not provide written informed consent to participate are ineligible
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note