Influence of Manipulation of Oocytes and Embryos in Low Oxygen Tension on Assisted Reproduction Technology Outcome

  • STATUS
    Recruiting
  • participants needed
    1160
  • sponsor
    The University of Hong Kong-Shenzhen Hospital
Updated on 22 September 2023

Summary

Nowadays, most assisted reproduction laboratories attempt to maintain as much as possible ex vivo culture conditions comparable to those in vivo. Various culturing condition such as temperature and pH parameters have been adjusted according to in vivo values in order to improve in-vitro fertilization (IVF) outcomes. Embryos of most mammals, including that of humans, are not exposed to oxygen concentration higher than 8%. Thus, embryos and gametes should be kept in a low oxygen environment during manipulation in assisted reproduction treatment.

Culturing embryos in low oxygen concentrations is now a general practice in IVF laboratories. However, there are still laboratory procedures when the oocytes/embryos are exposed to atmospheric oxygen. In most laboratories, oocytes retrieval is performed under atmospheric oxygen concentration. Oocyte is very sensitive to environmental changes, for instance, transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in human oocytes and oocyte in vitro maturation can lead to the decline of energy metabolism in human oocytes. Whether oocyte exposed to atmospheric oxygen during oocyte retrieval has detrimental effect on embryo development and IVF outcomes is unknown.

Previous studies showed that low oxygen tension during embryo culture improved implantation rate and clinical outcomes, but embryo quality was not affected. In other studies, embryo quality was improved but overall pregnancy was not affected. The reason for the discrepancies could be because the oxygen tension during oocyte/embryo manipulation was not under well control. For instance, oocyte retrieval, fertilization check and embryo grading were performed under atmospheric oxygen. It is difficult to predict how these factors negatively impact the IVF outcomes.

In this project, the investigators hypothesize that lower oxygen tension during oocyte/embryo manipulation improves IVF outcomes.

Description

In the experimental group, oocyte pickup will be performed in a lower oxygen tension environment (5% oxygen, 89% nitrogen, 6% carbon dioxide); oocyte pickup will be performed in a special workstation with reduced oxygen tension environment while fertilization check and embryo grading will be performed in conventional and time lapse embryo culture system. The time lapse culture system can provide a constant lower oxygen tension culture environment to the embryos. In the control group, oocyte pickup, fertilization check and embryo grading will be performed in atmospheric oxygen environment. Under this arrangement, the difference between the 2 groups is the oxygen tension during oocyte/embryo manipulation. The investigators believe that a solid conclusion can be drawn about whether lower oxygen tension environment can benefit IVF outcomes.

Details
Condition Embryo Hypoxia
Treatment 5% O2
Clinical Study IdentifierNCT04424784
SponsorThe University of Hong Kong-Shenzhen Hospital
Last Modified on22 September 2023

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note