Decoding Pain Sensitivity in Migraine With Multimodal Brainstem-based Neurosignature

  • End date
    Dec 24, 2025
  • participants needed
  • sponsor
    Taipei Veterans General Hospital, Taiwan
Updated on 24 April 2021


Migraine is a highly prevalent and disabling neurological disease, which has a tremendous impact on sufferers, healthcare systems, and the economy. According to the 2016 WHO report, migraine is the second leading cause of years lived with disability, greater than all other neurological diseases combined. Yet, the treatment in migraine is far from optimum; the sufferers often abuse painkillers and complicated with medication overuse headache. Migraine is characterized by the hypersensitivity of the sensory system, potentially attributed to dysfunctional pain modulatory networks located in the deep brain structures, particularly the brainstem. However, the current understanding of these deeply seated, dysregulated pain modulatory circuits in migraine is limited due to technological constraints. Besides, studies with an in-depth analysis of the clinical manifestations (i.e., deep phenotyping) are lacking, and there is no corresponding animal model readily available for translational research. In this project, the investigators propose a multimodal approach to address these issues by applying the technologies and platforms developed by our team to explore the correlation between pain sensitivity and dysregulated connectivities from brainstem to other brain regions. In this four-year project, the investigators will recruit 400 migraine patients and 200 healthy subjects. The investigators aim at decomposing the key brainstem mechanisms underlying dysmodulated pain sensitivity in migraine from 5 comprehensive perspectives: (1) clinical deep phenotyping, (2) high-resolution brainstem structural MRI and functional connectivity analysis, (3) innovative brainstem EEG signal detecting technique, (4) multimodal data fusion platform with neural network analysis, and (5) ultrahigh-resolution brainstem-based connectomes, intravital manipulations and recording, and connectome-sequencing in animal models. Moreover, the investigators will collaborate with Taiwan Semiconductor Research Institute to develop a wearable high-density EEG equipment, integrated with a System-on-Chip capable of edge-computing the signal using algorithms derived from our brainstem decoding platform. The ultimate goal is to build a real-time brainstem decoding system for clinical application.


Migraine causes a tremendous disease burden around the world. Migraine is one of the most prevalent neurological disorders and is reported by the WHO as the second leading cause of disease-related disabilities globally (No. 1 in the population under the 50s). There has been no much change in the ranking of disability for migraine for the past two decades, reflecting an unmet need for better treatment options. Even with the recently available calcitonin-gene related peptide (CGRP)-based treatment, the treatment response versus placebo is still disappointing (6.4-17.6% in acute treatment, 10.2-23.7% in preventive treatment). There is an urgent need to push further the current understanding of the pathophysiology of migraine, based on which novel treatment strategies can be developed. The lack of appropriate research tools hinders the acceleration of migraine research. As a neurological disorder, many neuroimaging studies have been focused on brain alterations; however, the majority focused on the cerebrum. Limited by the currently available neuroimaging and electrophysiological technologies, the deep brain structures especially the brainstem involved in the sensory and nociceptive neurotransmission in migraine, such as the trigeminal nucleus, could only be investigated to a limited extent. Obviously, there is an unmet need for novel technologies that can be used to delineate structural or functional alterations in the brainstem. Elucidation of the role of these deep brain structures may fill the gap in the current understanding of migraine pathophysiology, and pave the way to precise and efficient treatment. Studies restricted to single methodologies are insufficient for the complexity of migraine. Migraine is a complex and dynamic disorder. However, most prior studies were limited to single methodologies and provided limited insights into such a multifaceted disorder. Studies with an integrated approach are lacking. An exhaustive examination of the discrete components of a phenotype, i.e., 'deep phenotyping', can help understand different aspects of its clinical manifestations, and facilitate patient classification. Coupled with neuroimaging and electrophysiological research methodologies, a multi-modal decoding approach would help identify a constellation of migraine-specific biosignatures, rather than just one. This can not only provide clues to decipher migraine pathophysiology in various dimensions but also serve as the basis of the development of a prediction algorithm that can be applied in clinical practice. To pursue the overall goal, the present project schemes as a composition of the following 5 aims:

Aim 1: Deep phenotyping for sensory processing in patients with migraine Aim 2: Brainstem-based functional and structural connectomics in migraine Aim 3: Capturing brainstem electro-neurosignature in migraine Aim 4: Constructing a data fusion platform and developing an EEG cap with a built-in analytic chip Aim 5: Exploring brainstem-based connectome sequencing in migraine animal model

Condition Migraine, Migraine (Pediatric), Migraine (Adult), Primary Stabbing Headache, Migraine and Cluster Headaches, Migraine (Adult), Migraine and Cluster Headaches, Migraine (Pediatric), migraines
Treatment Healthy control, Flunarizine, Flunarizine
Clinical Study IdentifierNCT04702971
SponsorTaipei Veterans General Hospital, Taiwan
Last Modified on24 April 2021


Yes No Not Sure

Inclusion Criteria

20-65 yrs
normal neurological examination findings
understand the study design and willing to join the study

Exclusion Criteria

history or family history of epilepsy
women who are breastfeeding or pregnant
severe psychological disorders, including major depression, PTSD, personality disorders, bipolar disorder, schizophrenia
medical, neurological or psychiatric disease discovered by the researcher that would hinder the research
contraindications for MR scan (pacemaker, claustrophobia, stent, metal implants)
history of headache will be included (the tension-type headache occurs < 1 time per month is allowed)
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact



Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note