Effectiveness of Virtual Gait System Intervention in Motor Function in People With Incomplete Spinal Cord Injury.

  • STATUS
    Recruiting
  • End date
    Jul 31, 2023
  • participants needed
    80
  • sponsor
    University of Valencia
Updated on 29 March 2021

Summary

Roughly 60% of people with Spinal Cord Injury (SCI) have an incomplete one, with a strength, sensibility, and muscle tone alteration. Moreover, this condition involves a high impact on the psychological and socioeconomic levels.

After an incomplete SCI, spontaneous functional recovery occurs. This recovery is strong associated with injury and person characteristics, and with corticospinal fibers, motor cortex, and spinal neurons neuroplasticity. However, also it is possible to stimulate neuroplasticity mechanisms of these structures throughout rehabilitation techniques. Generally, with external devices, exoskeletons, or physical exercise therapy. With it, clinicians achieve early, intensive and specific therapies.

This reorganization and recovery can be influenced because of mirror neurons, located in motor and premotor areas, and in other cortical and subcortical areas. These types of neurons are activated with a functional action observation.

Due to incomplete SCI neuroplasticity recover, these therapies (concretely, illusion visual systems) have been the object of systematic review in this population with the aim of knowing its repercussion on neuropathic pain in chronic patients. Moseley and collaborators in 2007 were the first of proposing a virtual gat system that induced patients' gait illusion. The promising results in this intervention, leading institutions performed similar studies with other stimuli and devices, with good results.

However, SCI studies are focused on neuropathic pain and not in motor function (like in other populations). Therefore, there is not any study that assesses mirror neurons activity in the physical condition and/or in functional gait capaity in incomplete spinal cord injury population.

On the basis of the above, the study principal aim is to evaluate a virtual gait treatment effectiveness compared with combined interventions with specific gait physical exercise in functional capacity in the incomplete spinal cord injury population. Concretely in follow outcomes: gait, functionality, strength, muscle tone, sensibility, and neuropathic pain.

Description

Roughly 60% of people with Spinal Cord Injury (SCI) have an incomplete one, with a strength, sensibility, and muscle tone alteration. Moreover, this condition involves a high impact on the psychological and socioeconomic levels.

After an incomplete SCI, spontaneous functional recovery occurs. This recovery is strong associated with injury and person characteristics, and with corticospinal fibers, motor cortex, and spinal neurons neuroplasticity. However, also it is possible to stimulate neuroplasticity mechanisms of these structures throughout rehabilitation techniques. Generally, with external devices, exoskeletons, or physical exercise therapy. With it, clinicians achieve early, intensive and specific therapies.

This reorganization and recovery can be influenced because of mirror neurons, located in motor and premotor areas, and in other cortical and subcortical areas. These types of neurons are activated with a functional action observation. Mirror neurons activity has been studied with several brain injury populations (Cranial traumatisms, Parkinson, or Alzheimer's disease). Therefore, several experimental investigations have been developed by applying different interventions to modified their activity (mirror therapies, virtual reality therapies, or Action-Observation therapies). Its results showed promising improvements, except for advanced Alzheimer's disease.

Due to incomplete SCI neuroplasticity recover, these therapies (concretely, illusion visual systems) have been the object of systematic review in this population with the aim of knowing its repercussion on neuropathic pain in chronic patients. Moseley and collaborators in 2007 were the first of proposing a virtual gat system that induced patients' gait illusion. The promising results in this intervention, leading institutions performed similar studies with other stimuli and devices, with good results.

However, SCI studies are focused on neuropathic pain and not in motor function (like in other populations). Therefore, there is not any study that assesses mirror neurons activity in the physical condition and/or in functional gait capaity in incomplete spinal cord injury population.

On the basis of the above, the study principal aim is to evaluate a virtual gait treatment effectiveness compared with combined interventions with specific gait physical exercise in functional capacity in the incomplete spinal cord injury population. Concretely in follow outcomes: gait, functionality, strength, muscle tone, sensibility, and neuropathic pain.

Therefore, this study is a randomized clinical trial in which four groups of twenty people in each group will participate, with different interventions:

  1. Virtual Gait and Physical exercise.
  2. Documental projection and physical exercise.
  3. Virtual Gait.
  4. Documental Projection.

Data analysis will be performed with SPSS statistic program (v26). Normality and homocedasticity will be analyzed by Shapiro-Wilk t-test and Levene test, respectively. For comparation between groups Bonferroni will be used. If any confusion factor that not meet requirements to be analysed like a covaraible exist, ANCOVA will be used. When p<0.0.5 statistical significant differences will be asumed.

Details
Condition Incomplete Spinal Cord Injury
Treatment physical exercise, Virtual Gait, Documental projection
Clinical Study IdentifierNCT04809987
SponsorUniversity of Valencia
Last Modified on29 March 2021

Eligibility

Yes No Not Sure

Inclusion Criteria

Incomplete spinal cord injury (ASIA C,D or E)
Mini-Mental State Examination >23 points

Exclusion Criteria

Lower limbs traumathic pathology
Other nervous system alterations
Vestibular diseases
Other diseases
Clear my responses

How to participate?

Step 1 Connect with a site
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar
Name

Primary Contact

site
Name

0/250
Preferred Language
Other Language
Please verify that you are not a bot.

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note