The main goal of this prospective non-interventional exploratory study is to characterize the tumor micro-environment of advanced NSCLC in single-cell resolution, prior to immune checkpoint blockade exposure, and correlate the findings to clinical outcome. This approach will allow to generate new hypotheses regarding mechanism of action of ICI and (primary) resistance mechanisms. The long-term goal is that these novel mechanistic insights will be translated to a clinical setting to develop better biomarkers of ICI efficacy. Importantly, since the investigators will also sequentially profile the immune composition of peripheral blood, this research offers an opportunity to develop circulating (non-invasive) biomarkers.
A second aim is to characterize the immune cell composition of bronchoalveolar lavage (BAL) fluid from these ICI-treated cancer patients if they would develop ICI-pneumonitis. These mechanistic insights can directly lead to putative diagnostic biomarkers and therpeutic targets. Since single-cell profiling of blood samples will also be performed, circulating biomarkers of ICI toxicity can also be identified, making non-invasive diagnosis feasible.
The investigators will collect tumor biopsies from 70 st.IV NSCLC patients before start of treatment with immune checkpoint inhibitors. These biopsies are taken during a medically required routine procedure for diagnostic purposes, and will be subjected to the following experimental procedures:
First, scRNA-seq and TCR-seq will be applied on up to 5,000 randomly dissociated cells. Additionally, cell surface protein expression can be integrated with the transcriptional information. Various bioinformatics pipelines, including Seurat, will be used to identify different cell clusters, which through marker gene expression will be assigned to known cell types, cellular subtypes or phenotypes. For instance, this will enable the researchers to monitor the abundance of PD-1/PD-L1 expressing T cells, cytotoxic T-cells, immune-suppressive myeloid cells, etc. The following parameters at single-cell level will be relevant (non-exhaustive):
Blood samples will be subjected to similar experimental procedures. First, PBMC are isolated using Ficoll density gradient centrifugation. Single-cell transcriptome analysis in combination with CITE- seq will be performed on 5000 PBMC. Cellular composition will be determined using the same bioinformatic pipelines as used for processing the tumor biopsies.
As a second objective, immune profiling of the cellular composition of ICI-pneumonitis BAL fluid and PBMC will be performed using scRNA-seq, scTCR-seq and CITE-seq as previously outlined.
Condition | Non-Small Cell Lung Cancer, Immunotherapy, Interstitial lung disease, interstitial lung diseases, immunotherapies, nsclc |
---|---|
Treatment | Immune checkpoint inhibitor, Chemotherapy + Immune checkpoint inhibitor |
Clinical Study Identifier | NCT04807114 |
Sponsor | Universitaire Ziekenhuizen Leuven |
Last Modified on | 28 March 2021 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.