Decreasing Environmental Impact and Costs of Using Inhalational Anesthetic With a Carbon Dioxide Membrane Filter System

  • End date
    Dec 31, 2023
  • participants needed
  • sponsor
    Western University, Canada
Updated on 12 March 2021


Efficient inhalational anesthetic delivery requires the use of low-flow air and oxygen to reduce drug waste and minimize workspace contamination and environmental pollution. Currently, excess anesthetic gas is scavenged and removed from the operating room via the hospital ventilation system, where it is released into the atmosphere. CO2 is removed from the anesthesia circuit by the use of CO2 removal systems to prevent re-breathing and potential hypercarbia.

Carbon dioxide is currently removed using chemical granulate absorbers (CGAs), which trap CO2 in the granules that are later disposed of when absorption capacity is reached. They require replacement approximately every other day when used in moderate to high volume surgical centres, placing a costly burden on the healthcare system and environment (landfill).

One of the more concerning downfalls of using CGAs is the potential for the inhalational anesthetics to react with the granules and potentially produce toxic byproducts known as compounds A-E that are nephrotoxic and neurotoxic and require excess amounts of anesthetic gas to dilute.

This excess use of anesthetics gases places a financial burden on the healthcare system and has a detrimental impact on the environment. The vast majority of the gases used are eventually released into the environment with little to no degradation where they accumulate in the troposphere and act as greenhouse gases.

DMF Medical has created Memsorb, a new CO2 filtration membrane. Memsorb can remove CO2 from the anesthesia circuit without the use of CGAs, thereby eliminating the potential for toxic byproducts and allowing for significantly lower air and oxygen flow to be used, resulting in less use of inhalational anesthetics. Memsorb uses a polymeric membrane (similar to the ones used in oxygenators for cardiac surgery) that selectively allows CO2 to leave the rebreathing system, while maintaining the inhalational anesthetic in the circuit.

The lifespan of Memsorb is at least 12 months, resulting in less particulate waste and a decreased cost to the healthcare system.

We wish to evaluate the ability and efficacy of Memsorb in removing CO2 from the anesthesia circuit while maintaining physiologic minute volume ventilation, as compared to the traditional CGAs in a variety of surgical procedures, patient populations, and anesthesia gas flows.

Condition dental anesthesia, Anesthesia, Anesthesia (Local), Anesthesia, Anesthesia (Local), sensory loss, anaesthesia, anesthesia for, anesthesia procedures, Inhalation; Vapor, Inhalation; Vapor
Treatment memsorb, Chemical granulate absorber
Clinical Study IdentifierNCT04210570
SponsorWestern University, Canada
Last Modified on12 March 2021


Yes No Not Sure

Inclusion Criteria

Elective surgical procedure
Laparoscopic surgery for study aim III

Exclusion Criteria

Emergency surgery
Severe respiratory disease (eg Asthma)
Raised intracranial pressure
Regional anesthesia
Absence of arterial line for study aim III
Self-reported pregnancy
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note