Deciphering Preserved Autonomic Function After Spinal Cord Injury

  • End date
    Aug 1, 2024
  • participants needed
  • sponsor
    Spaulding Rehabilitation Hospital
Updated on 7 July 2022
spinal cord
spinal cord disorder
autonomic dysfunction
autonomic dysreflexia
neurologic findings
spinal injury
Accepts healthy volunteers


This study looks to characterize gradients of dysfunction in the autonomic nervous system after spinal cord injury. The autonomic nervous system plays key roles in regulation of blood pressure, skin blood flow, and bladder health- all issues that individuals with spinal cord injury typically suffer. Focusing on blood pressure regulation, the most precise metric with broad clinical applicability, the investigators will perform a combination of laboratory, ambulatory, and imaging-based tests to probe the body's ability to generate autonomic responses. For both individuals with spinal cord injury and uninjured controls, laboratory-based experiments will utilize multiple parallel recordings to identify how the autonomic nervous system is able to inhibit and activate signals. The investigators anticipate that those with autonomic dysfunction after spinal cord injury will exhibit abnormalities in these precise metrics. The investigators will further have research participants wear a smart watch that tracks skin electrical conductance, heart rate, and skin temperature, which can all provide clues as to the degree of autonomic dysfunction someone may suffer at home. The investigators will look to see if any substantial connections exist between different degrees of preserved autonomic function and secondary autonomic complications from spinal cord injury. Finally, functional magnetic resonance imaging scans will be attained to characterize patterns of connectivity within the injured spinal cord. In a similar manner, the investigators will look to see if different patterns of spinal cord connectivity are more closely related to groupings of secondary autonomic complications. In accomplishing this, the investigators hope to give scientists important insights to how the autonomic nervous system works after spinal cord injury and give physicians better tools to manage these secondary autonomic complications.


This study looks to characterize gradients of dysfunction in the autonomic nervous system after spinal cord injury. To accomplish this, we are enrolling both individuals with and without spinal cord injuries (see inclusion criteria). Individuals will undergo the listed diagnostics as part of a battery of laboratory testing. These will be correlated to clinical histories of autonomic dysfunction the ADFSCI and COMPASS-31 surveys (noted in outcome measures). Imaging-based tests will further probe the body's ability to generate autonomic responses.

Condition Spinal Cord Injuries, Autonomic Imbalance, Autonomic Dysreflexia, Orthostatic Hypotension
Treatment Tests of sympathetic inhibition, Tests of sympathetic activation, Testing of autonomic dysreflexia
Clinical Study IdentifierNCT04493372
SponsorSpaulding Rehabilitation Hospital
Last Modified on7 July 2022


Yes No Not Sure

Inclusion Criteria

All subjects
age 18-50 years old
Participants with spinal cord injury
Adult onset, traumatic spinal cord injury
Time since injury restricted to 1-5 years, in an effort to limit baroreflex desensitization
American Spinal Injury Association Impairment Scale, A-D, to encompass a spectrum of autonomic dysfunction after spinal cord injury
Neurological level of injury, C1-T12, as defined by the International Standards for Neurological Classification of Spinal Cord Injury. Incorporating level of injury down to T12 to encompass a broad range of autonomic dysfunction

Exclusion Criteria

History of cardiovascular disease, hypertension, neurologic disorders (with exception of spinal cord injury), or diabetes
Women who are pregnant or lactating
Currently taking blood thinners
Pacemaker, implanted defibrillator, or intrathecal pump incompatible with MRI scanning
Cognitive issues preventing informed consent for participation
Body mass index >30 kg/m2 for controls, in an effort to limit effects of early cardiovascular disease and diabetes in control population. Body mass index has not proven to be a good estimate of these factors following spinal cord injury
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note