Precise Recognition With Enhanced Vision of Endocrine Neck Targets

  • STATUS
    Recruiting
  • End date
    Mar 4, 2024
  • participants needed
    200
  • sponsor
    IHU Strasbourg
Updated on 19 February 2021

Summary

Iatrogenic injuries to the parathyroid glands during thyroid surgery or to the recurrent laryngeal nerve (RLN) do still occur, requiring often specialized management.

Recently, it has been demonstrated that the parathyroid gland shows a significant autofluorescence. Using a commercially available Near-InfraRed (NIR) camera (Fluobeam, Fluoptics, France), the parathyroid glands can be clearly visualized by contrast-free fluorescence imaging. However it lacks real-time quantification of the fluorescence intensity.

The hyperspectral imaging (HSI), which is a technology that combines a spectrometer to a camera system, examines the optical properties of a large area in a wavelength range from NIR to visual light (VIS). It provides spatial information real time, in a contact-free, non-ionizing manner. The HSI technology would add the spatial information, thus enormously enhancing the intraoperative performance.

The aim of the proposed study is to identify the spectral features of the important neck target structures, in particular the parathyroid glands, using an appropriate deep learning algorithm, to perform an automated parathyroid recognition. Additionally, this study proposes to compare the detection rate of the hyperspectral based parathyroid recognition with the already existing NIR autofluorescence based recognition.

Description

The major challenge in thyroid and parathyroid procedures, is the safe identification of the recurrent laryngeal nerve (RLN) and the localization of the parathyroid glands (to be preserved or to be selectively removed). Iatrogenic injuries to the parathyroid glands during thyroid surgery (resulting in transient or permanent hypocalcemia) or to the RLN (resulting in hoarseness, dysphonia, dyspnea) do still occur, requiring often specialized management.

The percentage of incidental parathyroidectomies, in specialized endocrine centers, is around 16%. In these cases, it is more likely to observe clinical relevant hypocalcemia than after planned parathyroidectomy for hyperparathyroidism. Therefore, there is a critical need for an intra-operative method enabling a precise, real-time parathyroid identification.

Recently, it has been demonstrated that the parathyroid gland shows a significant autofluorescence, which is caused by the optical properties of a still unknown intrinsic fluorophore. When the gland is excited by a light source with a wavelength ranging from 750-785 nm, it emits a fluorescence peak around 820 nm. Taking advantage of this property, Falco et al., using a commercially available NIR camera (Fluobeam, Fluoptics, France), could clearly visualize the parathyroid glands by contrast-free fluorescence imaging and could easily discriminate them from the thyroid and the surrounding tissue. The drawback with this autofluorescence-based imaging is that it lacks real-time quantification of the fluorescence intensity.

The hyperspectral imaging (HSI), which is a technology that combines a spectrometer to a camera system, examines the optical properties of a large area in a wavelength range from near infrared (NIR) to visual light (VIS). It provides diagnostic information about the tissue physiology, composition and perfusion. The fact that the HSI produces pictures, thus providing spatial information real time, in a contact-free, non-ionizing manner, makes it potentially a very valuable tool for the intraoperative use.

HSI has exhibited its great potential in the medical field especially in the diagnosis of various neoplasia (e.g. of the cervix, breast, colon, brain), in the detection of perfusion pattern in patients with peripheral arterial disease and in the area of wound diagnostic.

As previously shown, it is possible to discriminate the thyroid from the parathyroid glands according to the spectral characteristics, but the HSI technology would add the spatial information, thus enormously enhancing the intraoperative performance.

In collaboration with the University of Leipzig, Germany, the investigators performed a clinical pilot trial on 8 patients, which showed promising results. Hyperspectral images during benign endocrine surgery procedures were able to demonstrate that thyroid and parathyroid have specific hyperspectral signatures. Furthermore, the parathyroid glands showed usually less oxygenated than the thyroid. A discrimination of the parathyroid glands based on these characteristics is proven to be possible.

The aim of the proposed study is to identify the spectral features of the important neck target structures, in particular the parathyroid glands, using an appropriate deep learning algorithm, to perform an automated parathyroid recognition. Additionally, this study proposes to compare the detection rate of the hyperspectral based parathyroid recognition with the already existing NIR autofluorescence based recognition.

Details
Condition PARATHYROID DISORDER, Parathyroid Disorders, Parathyroid Disease, Thyroid disorder, Thyroid Disease, Thyroid Disorders, Parathyroid Disorders, Thyroid Disease, Parathyroid Disease, Thyroid Disorders, parathyroid
Treatment Hyperspectral and Fluobeam acquisition
Clinical Study IdentifierNCT04745793
SponsorIHU Strasbourg
Last Modified on19 February 2021

Eligibility

Yes No Not Sure

Inclusion Criteria

Man or woman over 18 years old
Patient with benign or malignant pathology of the thyroid or parathyroid gland
Patient with no contraindication to anesthesia and surgery
Patient able to receive and understand information related to the study
Patient affiliated to the French social security system

Exclusion Criteria

Patient who needs an emergency surgery
Pregnant or lactating patient
Patient under guardianship or trusteeship
Patient under the protection of justice
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

0/250

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note