This study plans to analyze the molecular and clinical mechanisms of the relationship between the GBA mutations and Parkinson's disease. This will be assessed through the use of advanced neuroimaging techniques called PET (positron emission tomography) to study the accumulation of the tau protein and the dysfunction of acetylcholine and dopamine in the brain of people with a mutation in the GBA gene, with and without Parkinson's disease. The ingestigators will also use a technology-based assessment to study the typing patterns as possible biomarkers of early motor dysfunctions.
Study Rationale: People who have a mutation in the GBA gene have a higher risk of developing Parkinson's disease (PD) and, if they have PD, are more likely to have cognitive decline and dementia. Cognitive problems in people with PD is related to dysfunction of the brain chemical acetylcholine and likely to the accumulation of the tau protein in the brain. Another observation in previous studies is that analyzing the patterns of typing into a computer can help differentiate healthy people from people with PD.
Hypothesis: The investigators hypothesize that people with GBA-related PD will have higher acetylcholine dysfunction and tau accumulation compared with non-GBA patients, and that these changes may start in the asymptomatic phase (i.e., people with the mutation but without symptoms of PD). The investigators also believe that the investigators will be able to detect subjects with higher degree of dopamine loss just by analyzing the way they type into a computer.
Study Design: The investigators will recruit 25 subjects with a GBA mutation (10 subjects with PD and 15 asymptomatic carriers). All the participants will have a clinical evaluation and a typing session, and subsequently will undergo a brain MRI and three PET scans with a tau tracer, an acetylcholine tracer, and a dopaminergic tracer. A blood sample will also be taken for the analysis of GCase (the enzyme related to the GBA mutation).
Impact on Diagnosis/Treatment of Parkinson's Disease: The results will help understand the changes that take place in the brain of people with GBA-related Parkinson's disease, and hopefully will shed light also on the pathophysiology of non-GBA-related Parkinson's, as well as on the molecular correlates of cognitive decline, especially in its early stage. The typing data along with dopaminergic imaging will clarify the possible role of using typing patterns to identify subjects with early stage Parkinson's disease.
Next Steps for Development: The findings of this study may help identify biomarkers for cognitive decline in early Parkinson's disease, with a potential role in clinical trials. Also, if the hypothesis on the typing is confirmed, this approach may be studied in larger cohorts for early diagnosis of Parkinson's in other at-risk populations.
Condition | Parkinson Disease, GBA Gene Mutation, Gaucher Disease |
---|---|
Treatment | PET scan, neuroQWERTY |
Clinical Study Identifier | NCT04101968 |
Sponsor | Pacific Parkinson's Research Centre |
Last Modified on | 25 January 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.