Development of a Point of Care System for Automated Coma Prognosis

  • End date
    Dec 3, 2023
  • participants needed
  • sponsor
    McMaster University
Updated on 3 February 2021


Electroencephalogram/event-related potentials (EEG/ERP) data will be collected from 50 participants in coma or other disorder of consciousness (DOC; i.e., Unresponsive Wakefulness Syndrome [UWS] or Minimally Conscious State [MCS]), clinically diagnosed using the Glasgow Coma Scale (GCS). For coma patients, EEG recordings will be conducted for up to 24 consecutive hours at a maximum of 5 timepoints, spanning 30 days from the date of recruitment, to track participants' clinical state. For DOC patients, there will be an initial EEG recording up to 24 hours, with possible subsequent weekly recordings up to 2 hours. An additional dataset from 40 healthy controls will be collected, each spanning up to a 12-hour recording period in order to formulate a baseline. Collected data are to form the basis for automatic analysis and detection of ERP components in DOC, using a machine learning paradigm. Salient features (i.e., biomarkers) extracted from the ERPs and resting-state EEG will be identified and combined in an optimal fashion to give an accurate indicator of prognosis.


The Problem: Coma is a state of unconsciousness with a variety of causes. Traditional tests for coma outcome prediction are mainly based on a set of clinical observations (e.g., pupillary constriction). Recently however, event-related potentials (ERPs; which are transient electroencephalogram [EEG] responses to auditory, visual, or tactile stimuli) have been introduced as useful predictors of a positive coma outcome (i.e., emergence). However, such tests require a skilled neurophysiologist, and such people are in short supply. Also, none of the current approaches has sufficient positive and negative predictive accuracies to provide definitive prognoses in the clinical setting.

Objective: The investigators will apply innovative machine learning methods to analyze patient EEGs (50 patients and 40 healthy controls) to develop a simple, objective, replicable, and inexpensive point of care system which can significantly improve the accuracy of coma prognosis relative to current methods. The physical requirements of the proposed system consist only of an EEG system (inexpensive in terms of medical equipment) and a conventional laptop computer.

Methodology: The investigators intend to extend the team's newest algorithms and develop machine learning tools for automatic analysis and detection of ERP components. Preliminary results by the team in this respect have been very promising. The most salient features (i.e., biomarkers) extracted from the ERP will be identified and combined in an optimal fashion to give an accurate indicator of prognosis. Features will be extracted from resting state brain networks and from network trajectories associated with the processing of ERP signals.

Significance: The proposed work will enable critical care physicians to assess coma prognosis with speed and accuracy. Thus, families and their health care team will be provided the most accurate information possible to guide discussions of goals of care and life-sustaining therapies in the context of dealing with the consequences of devastating neurological injury.

Condition Coma, Traumatic coma, Persistent Vegetative State, Neuropathology, Disorder of Consciousness, minimally conscious state, comatose, vegetative state
Clinical Study IdentifierNCT03826407
SponsorMcMaster University
Last Modified on3 February 2021


Yes No Not Sure

Inclusion Criteria

Patients ( 18 years of age) primarily admitted to the Intensive Care Units, Neurological Step Down Unit, or Coronary Care Unit at Hamilton General Hospital who are in coma with Glasgow Coma Scale (GCS) score of 3-8, or
Patients ( 18 years of age) who have other disorders of consciousness, primarily Minimally Conscious State (MCS) or Unresponsive Wakefulness Syndrome (UWS; also known as vegetative state)

Exclusion Criteria

Severe liver failure (i.e., Child-Pugh Class C)
Severe renal failure (i.e., Urea 40)
Previous open-head injury
Known primary and secondary central nervous system malignancy
Known hearing impairment
Previous intracranial pathology requiring neurosurgical interventions in the past 72 hours
Anyone who is deemed medically unsuitable for this study by the attending intensivists
Healthy Controls
years of age
no visual, language, learning, or hearing problems
no history of neurological or psychiatric disorder
not currently taking any medications that act on the central nervous system, such as antidepressants, anxiolytics, or anti-epileptics
(During the COVID-19 pandemic only)
years of age
have a weakened immune system
have one or more of the COVID-19 high risk medical conditions, according to the government of Canada website: <> e-high-risk-for-severe-illness-covid-19.html
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note