BoMI for Muscle Control

  • STATUS
    Recruiting
  • End date
    Aug 27, 2024
  • participants needed
    60
  • sponsor
    Shirley Ryan AbilityLab
Updated on 27 January 2021

Summary

People with spinal cord injury (SCI), stroke and other neurodegenerative disorders can follow two pathways for regaining independence and quality of life. One is through clinical interventions, including therapeutic exercises. The other is provided by assistive technologies, such as wheelchairs or robotic systems. In this study, we combine these two paths within a single framework by developing a new generation of body-machine interfaces (BoMI) supporting both assistive and rehabilitative goals. In particular, we focus on the recovery of muscle control by including a combination of motion and muscle activity signals in the operation of the BoMI.

Description

When suffering from conditions affecting the central nervous system, such as spinal cord injury (SCI), stroke or neurodegenerative disorders, two pathways are available for regaining independence and quality of life. One way is through clinical interventions, including therapeutic exercises, often in combination with pharmacological agents. The other is provided by assistive technologies, such as wheelchairs or robotic systems. These two approaches have conflicting characteristics. While rehabilitation exercises challenge patients to use the most affected parts of their musculoskeletal apparatus, assistive technologies are typically designed to bypass the disability. This has led to divergent research domains. In both fields there are three major gaps that we plan to address in the investigator's research:

  1. High cost of technology and the limited amount of available hospital-based rehabilitation;
  2. Lack of adaptability of currently available assistive technologies, such as head switches and sip-and puff devices, that require users to overcome a hard learning barrier;
  3. Inadequate criteria for assessment of effectiveness of therapy, with common techniques still relying on subjective approaches that are inadequate considering the current state of biomedical science and technology.

We will address all of these issues by developing a new generation of body-machine interfaces (BoMI) supporting both assistive and rehabilitative goals. BMIs will translate movement signals and muscle activities of the user into control signals for assistive devices and computer systems. State-of-the-art systems for surface electromyography (EMG) and movement recording (IMU) will be integrated through machine learning techniques to facilitate sensorimotor learning while providing the means to promote or reduce the use of targeted muscles. New comprehensive assessment techniques will be developed by integrating standard measure of function - as the manual muscle test - with EMG analysis and non-invasive magnetic brain stimulation (TMS) (Magstim 200 Bistim, Whitland, UK). The development will be organized in three specific aims.

AIM 1: To develop a BMI integrating muscle activities and motion signals for operating external devices and performing rehabilitation exercises. EMG signals derived from multiple muscles in the upper body (e.g. deltoid, pectoralis, trapezius, triceps, etc.) will be integrated with motion signals to generate control signals for external devices (e.g. the coordinates of a cursor on a computer monitor or the speed and direction commands to a powered wheelchair). Both linear (PCA) and nonlinear maps (auto encoder networks) will be explored, although current preliminary evidence suggests that non-linear auto encoders (AE) are likely to better facilitate user learning1.

AIM 2: To enable targeting and modulating recruitment of specific muscles and muscle synergies during the practice of games and functional tasks. To enhance or reduce the role of a muscle or synergy, the output of the BoMI will be modulated in proportion to the deviation of the measured muscle activity from the desired level. The effectiveness of the approach will be tested at different times following training, both by tracking of motions and EMG activities during the performance of selected activities of daily living (ADL) and trough the assessment of muscle responses evoked by non-invasive brain stimulation.

AIM 3: To promote the adoption of the BoMI by facilitating access to its functions by patients and therapists and by performing an observational study on uptake in the DayRehabTM environment. The Shirley Ryan Ability Lab has established a unique environment in which spinal cord injured and stroke outpatients engage in daily rehabilitation exercises in close physical proximity with researchers. We will seize this opportunity to introduce the BoMI in the context of clinical therapy thus allowing a direct assessment of acceptance by therapists and clients.

Details
Condition Cerebrovascular accident, Stroke, Cervical Spinal Cord Injury, Spinal Cord Injury Cervical, Stroke, cerebrovascular accidents, strokes, cerebral
Treatment Motion and Emg Control
Clinical Study IdentifierNCT04641793
SponsorShirley Ryan AbilityLab
Last Modified on27 January 2021

Eligibility

Yes No Not Sure

Inclusion Criteria

Recent stroke (Sub acute to early chronic, between 3 and 12 months from CVA)
Age less than 75 (To avoid age-related confounds)
Inability to operate a manual wheelchair
Available medical records and radiographic information about lesion locations
Significant level of hemiparesis (UE Fugl Meyer score between 10 and 30)
Presence of pathological muscle synergies in the UE (flexor and/or extensor synergy)

Exclusion Criteria

Aphasia, apraxia, cognitive impairment or affective dysfunction that would influence the ability to perform the experiment
Inability to provide informed consent
Severe spasticity, contracture, shoulder subluxation, or UE pain
Severe current medical problems, including rheumatoid arthritis or other orthopaedic impairments restricting finger or wrist movement
Additional exclusion criteria for participants enrolled in TMS procedures
Any metal in head with the exception of dental work or any ferromagnetic metal elsewhere in the body. This applies to all metallic hardware such as cochlear implants, or an Internal Pulse Generator or medication pumps, implanted brain electrodes, and peacemaker
Personal history of epilepsy (untreated with one or a few past episodes), or treated patients
Vascular, traumatic, tumoral, infectious, or metabolic lesion of the brain, even without history of seizure, and without anticonvulsant medication
Administration of drugs that potentially lower seizure threshold [REF], without concomitant administration of anticonvulsant drugs which potentially protect against seizures occurrence
Change in dosage for neuro-active medications (Baclophen, Lyrica, Celebrex, Cymbalta, Gabapentin, Naprosyn, Diclofenac, Diazepam, Tramadol, etc) within 2 weeks of any study visit
Skull fractures, skull deficits or concussion within the last 6 months
unexplained recurring headaches
Sleep deprivation, alcoholism
Claustrophobia precluding MRI
Pregnancy
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer  to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note