Septal Mapping And Resynchronisation Therapy- (SMART) Study

  • End date
    Aug 5, 2022
  • participants needed
  • sponsor
    Abbott Medical Devices
Updated on 25 October 2020
Sinny Delacroix, MD, PhD
Primary Contact
Abbott Medical Australia Pty Ltd (0.9 mi away) Contact
heart failure
cardiac resynchronization therapy


Normal heart function involves rhythmic contraction of all four chambers of the heart and this rhythm is maintained by the electrical wiring (conduction system) of the heart. Abnormality in this system results in either very slow or very fast heart rates leading to insufficient blood supply to the body due to inefficient pumping of the heart. cardiac resynchronization therapy pacemaker and cardiac resynchronization therapy defibrillator devices are used to synchronise heart function. The purpose of this study is not only to determine the pattern of electrical wiring of the heart and identify the variations seen in individuals with heart failure, but also, to explore the benefits of different types of pacing using CRT devices.


Heart failure (HF) is an abnormality of cardiac structure or function leading to failure of the heart to deliver oxygen at the rate commensurate with the requirement of the patient or is able to do so only at the expense of elevated left ventricular filling pressures. European Society of Cardiology (ESC) 2016 guidelines defined HF as a syndrome in which patients have typical symptoms (e.g. breathlessness, swelling and fatigue) and signs (elevated jugular pressure, pulmonary crackles and displaced apex beat) resulting from an abnormality of cardiac structure or function. Patients with HF experience decreased exercise capacity, inability to perform activities of daily living, diminished quality of life, increased frequency of hospitalization and higher rates of mortality. HF is highly prevalent and affects approximately 26 million people worldwide with an estimated mortality of 50% within 5 years of diagnosis.1, 2 It remains a major threat to the public health system since more than 1 million patients are hospitalized with a primary diagnosis of HF annually, and, in western countries it is the most common cause of hospitalization in individuals >65 years of age.

Cardiac resynchronization therapy (CRT) using biventricular (BiV) pacing has been developed to restore synchrony in HF patients with delayed ventricular activation, predominantly of the left ventricle (LV). Studies have demonstrated that simultaneous or sequential BiV pacing restores the synchrony of contraction, reduces mitral regurgitation, and improves cardiac output. Several landmark clinical trials published in the past few years have provided compelling evidence that CRT can produce significant clinical benefits, including improvements in patients' HF symptoms, quality of life, hospitalization rates, and echocardiographic measures which confer a mortality benefit. Majority of patients show a benefit from CRT treatment however, up to 40% derive no improvement. In the MIRACLE study, 34% of patients did not demonstrate an improvement based on a clinical composite score (CCS) that combined all-cause mortality, HF hospitalization, New York Heart Association (NYHA) class and the Minnesota Living with Heart Failure Quality of Life Score. Birnie and Tang et al have summarized nonresponder rates from various clinical studies and the authors suggest that while most studies quote non-responder rates at 20-30% the true rate may be as high as 40-50%. They indicate that the inconsistencies might be largely due to the lack of standard definitions or methodologies to measure CRT response.

The precise mechanisms determining response are yet to be fully elucidated. It is generally believed that success is based on minimizing electrical activation times in the LV with a fusion between a left ventricular wavefront from a lead placed in the coronary sinus (CS) and a wavefront from a lead placed in the RV or an intrinsic wavefront.

The effects of different RV pacing sites have been varied in terms of their relationship to outcomes from CRT pacing. Initial smaller studies showed different outcomes between right ventricular apex (RVA) and outflow tract (RVOT) lead position, however further studies failed to demonstrate a benefit. Following this it was demonstrated that lead position initially believed to be septal were in fact antero-septal and that co-ordinated conduction would not be expected from these sites. Differing activation patterns have been demonstrated on Electroanatomic mapping (EAM) between intrinsic left bundle branch block (LBBB (circumferential)) and RV apical pacing (longitudinal). Another small study showed that RV lead placement at the site of latest activation during LV pacing improved acute haemodynamic measurements compared to standard RVA pacing, as did a true mid septal site compared to RVOT pacing - with the RV septum being the latest activated site during LV pacing when the CS lead was in the lateral vein.

LV septal activation has been proposed as a possible contributor to a successful response to CRT implantation. Trans-septal activation time has been shown in an animal model to correspond to the presence or absence of Heart failure when an LBBB is present, and successful acute haemodynamic response correlated to minimal epicardial activation time, LV endocardial pre-excitation and shortest QRS duration. Trans-septal conduction times have also been theorized to account for why QRS shortening with CRT is less than expected, however the degree to which this contributes is unknown.

Left ventricular total and septal scar have also been correlated to non-response to CRT. This would be expected to contribute to a longer trans-septal activation, as well as to local tissue strain measurement on echocardiography. Patterns of scar and their relationship to trans-septal activation times have not been documented. In the normal human heart up to three early endocardial sites have been documented and the location of scar relative to these sites and its effect is unknown. Earliest LV septal activation in LBBB heart failure patients may occur in mid septal regions suggesting activation of the LBB or outside of this region demonstrating direct trans-septal conduction, whether this correlates to CRT response is yet to be determined. Further evidence exists that there is a delay between electrical and mechanical activation of different cardiac segments (EMD), and that this is variable in the normal heart, as well as in the failing heart where it is further exacerbated between septal and lateral walls of the left ventricle. Reduction in total activation time may increase the total amount of myocardium recruited at any time point and that this may minimize EMD.

This single arm, non-randomized, open-label, multi-center, clinical investigation of 20 subjects is designed to characterize RV and LV septal activation patterns in CRT patients with various pacing configurations. The study will also assess the association of CRT response to septal activation patterns, septal scar and morphology of surface ECG.

Treatment Cardiac resynchronization therapy by CRT-P or CRT-D implantation
Clinical Study IdentifierNCT04595305
SponsorAbbott Medical Devices
Last Modified on25 October 2020

Adding a note
adding personal notes guide

Select a piece of text and start making personal notes.


Yes No Not Sure

Inclusion Criteria

Is your age greater than or equal to 18 yrs?
Gender: Male or Female
Do you have any of these conditions: Cardiac Resynchronization Therapy or Heart failure or Congestive Heart Failure or Cardiac Disease or Heart disease?
Subjects are 18 years of age or older, or of legal age to give informed consent specific to state and national law
Subject must provide written informed consent prior to any clinical investigation related procedure
Subjects who are undergoing implantation of an Abbott CRT-P or CRT-D device under standard indications
Subjects are treated with optimal pharmacological therapy (as determined by the site principle investigator) for a minimum 4 weeks prior to procedure
ECG showing Sinus Rhythm (SR)
LBBB morphology with QRS duration >130ms
Subject should be willing and able to comply with the prescribed follow-up schedule of evaluations
Female subjects of child-bearing potential should have a negative pregnancy test done within 7 days prior to the index procedure per site standard test

Exclusion Criteria

Subjects with a life expectancy less than the duration of the study
Subjects with medical conditions that preclude the testing required for all patients by the study protocol or that otherwise limit study participation required for all patients
Subjects with mechanical tricuspid or aortic heart valves
Inaccessibility for follow-up at the study centre
Unwillingness or inability to provide written informed consent
Enrollment in, or intention to participate in, another clinical study during the course of this study excluding a registry
Pregnant or nursing subjects and those who plan pregnancy during the clinical investigation follow-up period
Clear my responses

How to participate?

Step 1 Connect with a site
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact


Phone Email

Please verify that you are not a bot.
Step 2 Get screened

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more
Step 3 Enroll in the clinical study

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more
Step 4 Get your study results

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer


user name

Annotated by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No made yet