Continuous Erector Spinae Plane Blocks for Rib Fractures

  • STATUS
    Recruiting
  • End date
    Dec 14, 2023
  • participants needed
    20
  • sponsor
    University of California, San Diego
Updated on 14 June 2022
nerve block
ropivacaine
injuries

Summary

Rib fractures are one of the most common injuries in trauma patients. These fractures are associated with significant pain as well as decreased ability to inspire deeply or cough to clear secretions, which together lead to complications of the lungs and breathing which leads to risks of further injury and even death.

One recent study found that the ability to move air into and out of the lungs practically doubled with the administration of a single-injection Erector Spainae Plane Block (ESPB) while pain levels nearly halved. However, a single-injection nerve block lasts less than 24 hours while a perineural local anesthetic infusion (also termed a "continuous peripheral nerve block") may be administered for multiple days. This entails inserting a tiny tube through the skin and into the area around the nerves, after which more local anesthetic may be administered prolonging the numbing effects.

The possibility of extending the duration of a ESPB with local anesthetic administration via a perineural catheter has not be investigated. We therefore are conducting a randomized, triple-masked, placebo-controlled, parallel-arm study to investigate the addition of a continuous ESPB to a single-injection ESPB following traumatic rib fractures.

The primary outcome of this study will be the maximum inspired volume measured by incentive spirometry on the afternoon following the nerve block procedure. We hypothesize that the maximum inspired volume will be significantly increased in the afternoon following the procedure with the addition of a continuous ESPB to a single-injection ESPB.

Description

Rib fractures are one of the most common injuries in trauma patients. These fractures are associated with significant pain as well as decreased ability to inspire deeply or cough to clear secretions, which together lead to complications of the lungs and breathing which leads to risks of further injury and even death.

The erector spinae plane block (ESPB) is a nerve block that covers multiple rib fractures with a single injection. This block entails injecting local anesthetic in the back superficial to the vertebral bodies. One study found that the ability to move air into and out of the lungs practically doubled with the administration of a single-injection ESPB while pain levels nearly halved.

A single-injection nerve block lasts less than 24 hours while a perineural local anesthetic infusion (also termed a "continuous peripheral nerve block") may be administered for multiple days. This entails inserting a tiny tube through the skin and into the area around the nerves, after which more local anesthetic may be administered prolonging the numbing effects. The possibility of extending the duration of a ESPB with local anesthetic administration via a perineural catheter has not be investigated.

We therefore are conducting a randomized, tripe-masked, placebo-controlled, parallel-arm study to investigate the addition of a continuous ESPB to a single-injection ESPB following traumatic rib fracture. Subjects will be individuals who present with rib fracture(s) and significant pain. Those who consent to participate in this study will have an ESP catheter inserted using ultrasound-guidance on the ipsilateral side at the level of the inferior-most fracture. For bilateral fractures, a second catheter will also be inserted on the remaining side. The single-injection ESPB will be administered to each catheter with 20 mL of ropivacaine 0.5% (with epinephrine).

Subjects with an accurately-inserted catheter based on visualization of local anesthetic spread will be allocated to one of two possible perineural treatments stratified by unilateral vs. bilateral fractures (1:1 ratio in blocks of 2):

  1. active (ropivacaine 0.3%)
  2. placebo (normal saline)

Computer-generated randomization lists will be created by the UCSD Investigational Drug Service which will keep the randomization lists and not release them to the investigators until the study is completed, at which time they will provide lists of subjects who received "Treatment A" and "Treatment B" so that the statistician can analyze the data. Only after the analysis is complete will "Treatment A" and "Treatment B" be defined for the investigators for manuscript preparation [producing a triple-masked study]. Of note, for bilateral catheters the treatments on both sides will always be identical: each subject will be randomized to a single treatment and not each side of bilateral cases.

Subjects will receive a basal infusion of study fluid (ropivacaine vs. placebo) 1 mL/h to keep the catheter lumen patent as soon as the infusion pump is initiated with a 500 mL reservoir. In addition, intermittent boluses (13 mL programmed automatic bolus every 2 hours) will begin 5 hours after pump initiation. For bilateral catheters, a 6-hour delay for one of the pumps will ensure that the pair of pumps alternate sides for the bolus doses each hour. This protocol will provide nearly 71-72 hours of study fluid administration.

Following local anesthetic reservoir exhaustion, subjects or their caretakers will remove the catheters with instructions provided by phone. This is standard at UC San Diego for all ambulatory continuous peripheral nerve blocks and will not be unique to study participation. The catheter is disposable in the trash and the infusion pump will be returned using a pre-addressed and postage-paid envelope provided to subjects prior to leaving the hospital.

Subjects will be contacted by telephone to collect study data on post procedure days 1, 2, 7, and at months 0.5, 1, 1.5, 2, 3, 6, and 12.

The ultimate objective of the proposed line of research is to determine if the addition of a continuous ESPB to a single-injection ESPB prolongs analgesia following traumatic rib fractures; and, if this analgesic intervention improves pulmonary mechanics measured with incentive spirometry.

Specific Aim 1: To determine if the addition of a continuous ESPB to a single-injection ESPB improves maximum inspiratory volume following traumatic rib fracture(s).

Hypothesis 1a: The maximum inspired volume will be significantly increased in the afternoon following the procedure [primary endpoint] as well as at other time points following the procedure [secondary end points] with the addition of a continuous ESPB to a single-injection ESPB [measured with an incentive spirometer].

Hypothesis 1b: The maximum inspired volume as a percentage of the baseline will be significantly increased in the afternoon following the procedure [secondary endpoint of greatest interest], as well as at other time points following the procedure [secondary end points] with the addition of a continuous ESPB to a single-injection ESPB [measured with an incentive spirometer].

Specific Aim 2: To determine if the addition of a continuous ESPB to a single-injection ESPB decreases the pain associated with rib fracture(s).

Hypothesis 2a: The severity of rib fracture pain at rest will be significantly decreased within the 12 months following the procedure with the addition of a continuous ESPB to a single-injection ESPB [measured using the Numeric Rating Scale for pain].

Hypothesis 2b: The severity of rib fracture pain when using the spirometer or coughing will be significantly decreased within the 12 months following the procedure with the addition of a continuous ESPB to a single-injection ESPB [measured using the Numeric Rating Scale for pain].

Hypothesis 2c: The incidence of chronic rib fracture pain will be significantly decreased 6 and 12 months following a rib fracture with the addition of a continuous ESPB to a single-injection ESPB [measured using the Numeric Rating Scale for pain].

Hypothesis 2d: The severity of chronic rib fracture pain will be significantly decreased 6 and 12 months following a rib fracture with the addition of a continuous ESPB to a single-injection ESPB [measured using the Numeric Rating Scale for pain].

Details
Condition Rib Fractures, Trauma, Anesthesia, Anesthesia, Local
Treatment Continuous erector spinae plane nerve block, Active ropivacaine 0.3% erector spinae plane perineural administration, Placebo erector spinae plane perineural administration
Clinical Study IdentifierNCT04558281
SponsorUniversity of California, San Diego
Last Modified on14 June 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

having a total of 1-6 rib fractures at least 3 cm distal to the costo-transverse joint (bilateral fractures are acceptable, but the total of the two sides combined must not exceed 6 fractures)
regional anesthetic requested by the admitting service
patient accepting of a perineural catheter insertion and subsequent study fluid treatment

Exclusion Criteria

chronic opioid use (daily use within the 2 weeks prior to presentation and duration of use > 4 weeks; of note, any testing for opioid use will not occur as part of the study, but may as standard of care)
pregnancy
incarceration
inability to communicate with the investigators
weight < 45 kg or morbid obesity (body mass index > 40 kg/m2)
comorbidity precluding either perineural catheter insertion or subsequent ambulatory perineural local anesthetic administration (e.g., current infection at the catheter insertion site, known hepatic or renal insufficiency, immune-compromised status of any etiology)
any patient unable to correctly perform incentive spirometry as this is the primary outcome measure
any patient with any degree of decreased mental capacity as determined by the surgical service
any reason an investigator believes study participation would not be in the best interest of the potential subject
flail chest
chest tube
fracture of the 1st rib on either side
any injury other than the rib fracture(s) that potentially effects inspiratory effort or volume (e.g., clavicle fracture)
inability to contact the investigators during the perineural administration, and vice versa (e.g., lack of telephone access)
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

0/250

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note