Black individuals are at increased cardiovascular disease risk. The central goal of the study is to determine if mitochondrial reactive oxygen species influence blood vessel function and nervous system regulation of blood pressure differentially in black, compared to white individuals. These findings may help to explain a potential mechanism that contributes to racial disparities in blood pressure and cardiovascular disease risk. A secondary goal is to determine if mitochondrial reactive oxygen species improves blood pressure and vascular function in individuals with elevated blood pressure and stage 1 hypertension.
The prevalence of hypertension in black adults is higher than in any other race/ethnicity in the US, and among the highest in the world. Hypertension is a risk factor for several major cardiovascular diseases. Racial disparities in blood vessel function are well documented. Moreover, racial disparities in hypertension persist despite advances in pharmacotherapies. Therefore, a major knowledge gap remains in identifying the mechanism(s) underlying racial disparities in hypertension, and ultimately cardiovascular diseases.
Our goal is to investigate reasons for the higher prevalence of blood vessel dysfunction and hypertension in black individuals, and to identify effective preventive strategies. Excess free radicals contribute to blood vessel dysfunction, kidney dysfunction, and thus hypertension as both blood vessel health and the kidneys contribute to blood pressure regulation. Moreover, excess free radicals contribute to blood vessel dysfunction in black adults. Mitochondria are a major source of free radicals. Mitochondria antioxidants improve blood vessel function in rodents and in human trials. A prior aging study demonstrated that acute MitoQ (single 160mg-dose mitoquinone) restored blood vessel function in older adults. Anohter recent study demonstrated that a single 80mg dose elicited similar improvements in adults with peripheral artery disease. however, the role of mitochondrial free radicals in racial disparites in blood vessel function is unclear. Our central hypothesis is that mitochondrial free radicals play a role in reduced blood vessel function and kidney in black adults. We will test our hypothesis using a randomized, placebo-controlled, crossover design, acute MitoQ supplement study in black and white adults (we will not exclude other races though). We will also measure blood pressure and urine biomarkers that are indicative of kidney injury in this proposal.
Regarding methodology, we will perform blood draws, vascular testing, and record nervous system activity before and one hour after acute MitoQ and placebo consumption. We will also measure urine biomarkers of kidney function and blood pressure in the hours following acute MitoQ and placebo consumption in adults (19-75 years old).
Condition | Racial Disparities, Blood Pressure, Cardiovascular Risk Factor, Renal Function |
---|---|
Treatment | MitoQ |
Clinical Study Identifier | NCT04334135 |
Sponsor | Auburn University |
Last Modified on | 7 October 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.