We are attempting to improve the cerebral monitoring of extremely low gestational age (ELGA) infants, such that in the future, real-time monitoring will be possible, to aid clinicians in their management of these infants. We wish to establish a new NIRS device, diffuse correlation spectroscopy (DCS), as a safe, noninvasive and informative bedside tool for assessing and monitoring brain health in ELGA infants during the first few days of life. It is hoped that this method will provide detailed information on changes in oxygen consumption and metabolism, and cerebral perfusion. This technique will have wide applicability, but for this research study we wish to focus on the effect of blood flow instabilities, intermittent hypotension and hypoxic episodes, pressure passive CBF periods, and hypoperfusion on the preterm brain during the first days of life, and their relationship with incidence of intraventricular hemorrhage (IVH). We aim to recruit 100 premature infants to obtain data to:
Infants born at an extremely low gestational age (<29 weeks GA) (ELGA) are at risk for developing any grade of intraventricular hemorrhage (IVH). In association with IVH, ELGA infants may develop associated neuropathology including periventricular hemorrhagic infarction, post-hemorrhagic hydrocephalus and periventricular leukomalacia. Long-term neurodevelopmental outcomes depend on the severity of the hemorrhage. High-grade IVH (grade III or IV) is associated with a 50% risk for cerebral palsy and significant intellectual disability. Such disabilities have devastating and lifelong impact on affected children, their families and society. In more than 90% of the cases, IVH in ELGA infants occurs during the first three postnatal days. The major risk factor for IVH is the gestational age of the infant with greater immaturity being associated with the highest risk. The degree of prematurity of the infant relates to the immaturity of the vascular bed within the germinal matrix as well as challenges in the regulation of the cerebrovascular circulation. Specifically, increases, decreases and significant fluctuations in cerebral blood flow (CBF) have been shown to play important pathogenic roles in IVH. These CBF instabilities have been related to the mechanics of ventilation as well as to the severity of the infant's illness, with contributing factors of hypercarbia, hypovolemia, hypotension, restlessness, patent ductus arteriosus, and relatively high inspired oxygen concentrations. Another major contributing factor to CBF instabilities is the pressure-passive cerebral circulatory state in the unstable ELGA infants. To prevent such deleterious consequences on the developing brain of preterm infants, optimal therapeutic strategies that maintain both cardiopulmonary function and cerebrovascular stability need to be developed. The major obstacle impeding effective brain-oriented neonatal intensive care is the lack of a relevant bedside continuous monitor of cerebral blood flow.
Near-infrared spectroscopy (NIRS) is a non-invasive, non-ionizing method for monitoring and imaging of brain hemodynamics. Commercially available, FDA-approved NIRS systems provide hemoglobin concentration changes and relative hemoglobin oxygen saturation (rSO2) as a surrogate for cerebral perfusion and oxygen consumption. However currently there are no commercially available monitors, which can directly assess cerebral perfusion and oxygen consumption in preterm infants. We are investigating the possibility of using a novel NIRS optical method to quantify cerebral perfusion, continuously, at the bedside in the NICU preterm population. We believe the use of Diffuse Correlation Spectroscopy (DCS) as a stand-alone and in combination with frequency-domain (FD) or continuous wave (CW) NIRS will offer more robust diagnostic capabilities by directly quantifying cerebral blood flow (CBF), and cerebral oxygen metabolism (CMRO2). Our preliminary efforts in animals and humans with this optical device show the potential of the technique.
Measurement Protocol Summary:
Condition | Premature Birth, Extremely Low Birth Weight, Infant, Small for Gestational Age, Intracerebral Hemorrhage |
---|---|
Treatment | Diffuse Correlation Spectroscopy (DCS), Amplitude Integrated Electroencephalography (aEEG) |
Clinical Study Identifier | NCT04367181 |
Sponsor | Maria Angela Franceschini |
Last Modified on | 5 March 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.