Long-term variability analysis of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) has been successfully used in research to predict the exacerbation of the disease in adult individuals with asthma. However, there is a paucity of data regarding PEF and FEV1 variability in asthmatic children and adolescents. Such a task requires at least daily PEF and FEV1 measurements, recording in diaries, and periodic evaluation of the data. The process may be proven both complicated and time consuming, thus reducing patients' adherence. Recent advances in biosensor technology have permitted the development of reliable, low-cost, portable spirometers, able to connect with smartphones and monitor lung function parameters in real time and from a distance.
The objectives of the present study is the assessment of PEF and FEV1 variability: a) in healthy children and adolescents, in order to define the normal daily fluctuation of PEF and FEV1 and the parameters that may influence it, and b) in children and adolescents with asthma, in order to explore the differences from healthy subjects and reveal any specific variability changes prior to exacerbation. Such data would improve our understanding regarding the disease and permit the development of integrated tools for assessing the level of asthma control and the risk of future exacerbations.
The study will include 100 healthy children and adolescents aged 6 to 18 years for the assessment of normal PEF and FEV1 variability, and 100 children and adolescents of the same age with diagnosed asthma for the assessment of PEF and FEV1 variability in asthmatics. PEF and FEV1 measurements will be performed using an FDA-approved portable spirometer (MIR Spirobank Smart) capable to connect to smartphone. Each participant will receive his personal spirometer. Measurements will be performed twice a day between 07:00-09:00 and 19:00-21:00 hours and dispatched via email to a central database for a period of 3 months. PEF and FEV1 variability will be assessed by detrended fluctuation analysis, aiming to define the normal pattern (healthy controls) and to detect and quantify the deviations (asthmatics). The anticipated duration of the study is 24 months.
Background
Asthma represents the most common chronic disease of childhood and adolescence and an important cause of morbidity worldwide. The disease is characterized by episodes of reversible airway obstruction (exacerbations), associated with specific symptoms (wheeze, dyspnea, cough, chest tightness) and decrease in peak expiratory flow (PEF) and forced expiratory volume at 1 sec (FEV1). However, these spirometric changes occur in parallel with clinical deterioration, thus presenting limited ability to predict the exacerbation of the disease.
Both PEF and FEV1 demonstrate significant daily variability, i.e., circadian and/or day-by-day fluctuation of the measured values. In healthy individuals the pattern of these fluctuations remains constant over long time periods (weeks, months), as opposed to asthmatic patients where PEF and FEV1 variability is increased, especially prior to exacerbations when the control of the disease is lost. Thus, the analysis of PEF and FEV1 variability has been used in research to evaluate the effectiveness of treatment, recognize high-risk patients and predict asthma exacerbations.
In clinical practice, however, the evaluation of PEF and FEV1 variability requires at least daily measurements with special devices, recording in diaries, and periodic evaluation of the data by the attending physicians. The process may be proven both complicated and time consuming, thus reducing patients' adherence especially in the case of asthmatic children and adolescents. In addition, the periodic review of measurements may hamper the prediction of exacerbation, as the time of evaluation may not coincide with changes in the variability of lung function that characterize the loss of asthma control.
Over the last years, technological advancements in the field of biosensors and microprocessors have permitted the development of reliable, low-cost, portable spirometers, able to connect with cutting-edge mobile phones (smartphones) and monitor lung function parameters in real time and from a distance. The use of such devices may overcome most of the aforementioned barriers in following-up lung function parameters in the long term.
Currently, there is a paucity of data regarding PEF and FEV1 variability in children and adolescents with asthma. Such data would improve our understanding regarding the disease and permit the development of integrated tools for assessing the level of asthma control and the risk of future exacerbations
Objectives
The objectives of the study are:
Methods
The study will include two cohorts:
PEF and FEV1 variability will be assessed by:
PEF and FEV1 measurements from 100 participants (3 months each)
Part II: Assessment of PEF and FEV1 variability in asthmatic children and adolescents Duration: 15 months (October 2020 - December 2021). PEF and FEV1 measurements from 100 participants (3 months each)
G. Ethics The study will comply to the regulations and standards of good medical practice. Participants will receive a unique study number and no personal data will be recorded. Measurements will be dispatched via email in encrypted pdf format. Informed written parental consent will be obtained prior to enrollment. Children aged >12 years will also provide a written consent. The study has been approved by the Ethics Committee of the University Hospital of Patras, Greece (decision # 329/02-04-2019).
Condition | Asthma in Children, Lung Function Decreased |
---|---|
Treatment | Measurements of PEF and FEV1 |
Clinical Study Identifier | NCT04163146 |
Sponsor | University of Patras |
Last Modified on | 7 February 2023 |
Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.