Impacts of Mitochondrial-targeted Antioxidant on Peripheral Artery Disease Patients

  • End date
    Sep 1, 2022
  • participants needed
  • sponsor
    University of Nebraska
Updated on 1 September 2021
cardiovascular disease
intermittent claudication
peripheral arterial diseases
treadmill test


Title: Impacts of mitochondrial-targeted antioxidant on leg blood flow and skeletal muscle mitochondrial function in peripheral artery disease patients.

Peripheral artery disease (PAD) is a common cardiovascular disease, in which narrowed arteries reduce blood flow to the limbs, causing pain, immobility and in some cases amputation or death. PAD patients have shown higher levels of systemic and skeletal muscle inflammation due to the impaired oxygen transfer capacity of these blood vessels. This attenuated oxygen transfer capacity causes hypoxic conditions in the skeletal muscle and results in mitochondrial dysfunction and elevated reactive oxygen species (ROS). These harmful byproducts of cell metabolism are the major cause of intermittent claudication, defined as pain in the legs that results in significant functional limitations. One potential defensive mechanism to these negative consequences may be having higher antioxidant capacity, which would improve blood vessel vasodilatory function, enabling more blood to transfer to the skeletal muscles. Therefore, the purpose of this project is to examine the impact of mitochondrial targeted antioxidant (MitoQ) intake on oxygen transfer capacity of blood vessels, skeletal muscle mitochondrial function, leg function, and claudication in patients with PAD. Blood vessel oxygen transfer capacity in the leg will be assessed in the femoral and popliteal arteries. Skeletal muscle mitochondrial function and ROS levels will be analyzed in human skeletal muscle via near infrared spectroscopy and through blood samples. Leg function will be assessed by walking on a force platform embedded treadmill and claudication times will be assessed with the Gardner maximal walking distance treadmill test.


Previous studies reported that atherosclerotic lesions are distributed non-uniformly in the leg arteries, and the resulting impaired blood flow, and concomitant reduced oxygen delivery to skeletal muscle results in the pathophysiology of PAD. We have recently demonstrated that patients with PAD have higher levels of systemic and local skeletal muscle inflammation due to impaired oxygen transfer capacity of leg blood vessels, which causes hypoxic conditions, meaning lack of oxygen, in the leg skeletal muscle. Skeletal muscle mitochondrial dysfunction and elevated reactive oxygen species (ROS) represent key pathological processes linked to atherosclerosis-mediated hypoxic and metabolic stress in PAD patients. One potential defensive mechanism to these negative consequences of impaired oxygen transfer capacity-induced hypoxic stress may be having higher levels of antioxidant capacity. MitoQ, a derivative of CoQ10, is a commercial antioxidant that counteracts this oxidative stress within the mitochondria. High ROS levels have been positively correlated with reduced NO bioavailability, which limits the ability of the blood vessels to dilate, thereby increasing the occlusion that leads to claudication in PAD patients. MitoQ should reduce these ROS levels and increase vasodilatory function. However, the influence of MitoQ intake on leg blood flow, ROS production, claudication and leg function has not yet been investigated in this disease population. This research project may help us to understand the beneficial effects of higher mitochondrial specific antioxidant capacity on oxygen transfer capacity of leg blood vessels, mitochondria function, leg performance and leg pain in patients with PAD.

Condition peripheral artery disease, Peripheral Vascular Disease, peripheral arterial disease, Peripheral vascular disease, peripheral arterial diseases, Peripheral Arterial Disease (PAD), Circulation Disorders
Treatment MitoQ
Clinical Study IdentifierNCT03506633
SponsorUniversity of Nebraska
Last Modified on1 September 2021


Yes No Not Sure

Inclusion Criteria

be able to give written, informed consent
demonstrate positive history of chronic claudication
have a history of exercise limiting claudication
have an ankle/brachial index < 0.90 at rest
have a stable blood pressure regimen, stable lipid regimen, stable diabetes regimen and risk factor control for 6 weeks
be between 50-85 years old

Exclusion Criteria

rest pain or tissue loss due to PAD (Fontaine stage III and IV)
acute lower extremity ischemic event secondary to thromboembolic disease or acute trauma
walking capacity limited by conditions other than claudication including leg (joint/musculoskeletal, neurologic) and systemic (heart, lung disease) pathology
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact



Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note