Intelligent ICU of the Future

  • days left to enroll
  • participants needed
  • sponsor
    University of Florida
Updated on 19 February 2022


The objective of this project is to create deep learning and machine learning models capable of recognizing patient visual cues, including facial expressions such as pain and functional activity. Many important details related to the visual assessment of patients, such as facial expressions like pain, head and extremity movements, posture, and mobility are captured sporadically by overburdened nurses or are not captured at all. Consequently, these important visual cues, although associated with critical indices, such as physical functioning, pain, and impending clinical deterioration, often cannot be incorporated into clinical status. The study team will develop a sensing system to recognize facial and body movements as patient visual cues. As part of a secondary evaluation method the study team will assess the models ability to detect delirium.


Pain is a critical national health problem with nearly 50% of critical care patients experience significant pain in the Intensive Care Unit (ICU). The under-assessment of pain response is one of the primary barriers to the adequate treatment of pain in critically ill patients, associated with many negative outcomes such as chronic pain after discharge, prolonged mechanical ventilation, longer ICU stay, and increased mortality risk. Nonetheless, many ICU patients are unable to self-report pain intensity due to clinical conditions, ventilation devices, and altered consciousness. Currently, behavioral pain scales are used to assess pain in nonverbal patients. Unfortunately, these scales require repetitive manual administration by overburdened nurses. Moreover, prior work suggests that nurses caring for quasi-sedated patients in critical care settings have considerable variability in pain intensity ratings. Furthermore, manual pain assessment tools lack the capability to monitor pain continuously and autonomously. Together, these challenges point to a critical need for developing objective and autonomous pain recognition systems.

Delirium is another common complication of hospitalization that poses significant health problems in hospitalized patients. It is most prevalent in surgical ICU patients with diagnosis rates up to 80%. It is characterized by changes in cognition, activity level, consciousness, and alertness. Delirium typically leads to changes in activity level and alertness that pose additional health risks including risk of fall, inadequate mobilization, disturbed sleep, inadequate pain control, and negative emotions. All of these effects are difficult to monitor in real-time and further contribute to worsening of patient's cognitive abilities, inhibit recovery, and slow down the rehabilitation process. Though about a third of delirium cases can benefit from intervention, detecting and predicting delirium is still very limited in practice. Current Delirium assessments need to be performed by trained healthcare staff, are time consuming, and resource intensive. Due to the resources necessary to complete the assessment, delirium is often assessed twice per day, despite the transient nature of the disease state which can come and go undetected between the assessments. Jointly these obstacles demonstrate a dire need for real-time autonomous delirium detection.

The investigators hypothesize that the proposed model would be able to leverage accelerometer, electromyographic, and video data for the purpose of autonomously quantifying patient facial expressions such as pain, characterizing functional activities, and delirium status. Rationalizing that autonomous visual cue quantification and delirium detection can reduce nurse workload and can enable real-time pain and delirium monitoring. Early detection of delirium offers patients the best chance for good delirium treatment outcomes.

Condition Pain, Delirium
Treatment accelerometer monitoring, Video Monitoring, Electromyographic Monitoring, Noise Level Monitoring, Light Level Monitoring
Clinical Study IdentifierNCT03905668
SponsorUniversity of Florida
Last Modified on19 February 2022


Yes No Not Sure

Inclusion Criteria

Individual has their name designated on a patient's informed consent form giving them permission to view and modify facial and activity data collected about that patient

Exclusion Criteria

Age < 18
They are unable to answer short questions on a touch screen display
They are unable to wear a proximity sensor
They were not on the listed of designated individuals specified in their friend/family members informed consent form
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact



Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider


Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 



Reply by • Private

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note