Last updated on June 2019

Microbiome/Peptidome-based Model for Non-invasive Detection of High-risk Gastroesophageal Varices in Compensated Cirrhosis (CHESS1901/APPHA1901)


Brief description of study

Variceal hemorrhage is a lethal complication in patients with cirrhosis and portal hypertension. Identification of varices needing treatment in compensated cirrhosis is, therefore, of great therapeutic and prognostic importance. The gold standard for diagnosing gastroesophageal varices and evaluating the risk of variceal hemorrhage is esophagogastroduodenoscopy. According to the Baveno VI consensus, for those with high-risk varices (HRV), either non-selective beta blockers or endoscopic band ligation is recommended for the prevention of the first variceal bleeding. However, the invasiveness and uncomfortableness during the esophagogastroduodenoscopy procedure has hindered its use in clinical practice, especially in patients with compensated cirrhosis. Sufficient accurate non-invasive tools for detection of HRV are warranted to safely avoid the use of esophagogastroduodenoscopy.

Advanced technologies including next-generation sequencing and MALDI-TOF mass spectrometry have the potential to be applied in this field. The latter is a widespread adopted tool in clinical microbiology for rapid, accurate and cost-effective identification of cultured bacteria and fungi. Recently, microbiome and peptidome have been proved their roles in the end-stage liver disease (e.g. cirrhosis, hepatocellular carcinoma), which may exhibit predictive capacity of HRV. In the present study, the investigators aim to conduct a prospective, multicenter diagnostic trial in 12 sites in China, 1 site in Turkey and 1 site in Thailand to evaluate the diagnostic performance of the microbiome/peptidome-based model for HRV detection in compensated cirrhosis.

Detailed Study Description

Variceal hemorrhage is a lethal complication in patients with cirrhosis and portal hypertension. Identification of varices needing treatment in compensated cirrhosis is, therefore, of great therapeutic and prognostic importance. The gold standard for diagnosing gastroesophageal varices and evaluating the risk of variceal hemorrhage is esophagogastroduodenoscopy. According to the Baveno VI consensus, for those with high-risk varices (HRV), either non-selective beta blockers or endoscopic band ligation is recommended for the prevention of the first variceal bleeding. However, the invasiveness and uncomfortableness during the esophagogastroduodenoscopy procedure has hindered its use in clinical practice, especially in patients with compensated cirrhosis. Sufficient accurate non-invasive tools for detection of HRV are warranted to safely avoid the use of esophagogastroduodenoscopy.

Advanced technologies including next-generation sequencing and MALDI-TOF mass spectrometry have the potential to be applied in this field. The latter is a widespread adopted tool in clinical microbiology for rapid, accurate and cost-effective identification of cultured bacteria and fungi. Recently, microbiome and peptidome have been proved their roles in the end-stage liver disease (e.g. cirrhosis, hepatocellular carcinoma), which may exhibit predictive capacity of HRV. In the present study, the investigators aim to conduct a prospective, multicenter diagnostic trial in 12 sites (The First Hospital of Lanzhou University; Zhujiang Hospital of Southern Medical University; Nanfang Hospital of Southern Medical University; Xingtai People's Hospital; Zhongda Hospital, Medical School, Southeast University; The Third People's Hospital affiliated to Jiangsu University; Guangdong Second Provincial General Hospital; Tianjin Infectious Disease Hospital; Lishui Municipal Central Hospital; The Second Hospital of Anhui Medical University; Xi'an Gaoxin Hospital; The Sixth People's Hospital of Shenyang) in China, 1 site (Ankara University School of Medicine) in Turkey and 1 site (King Chulalongkorn Memorial Hospital affiliated to Chulalongkorn University) in Thailand to evaluate the diagnostic performance of the microbiome/peptidome-based model for HRV detection in compensated cirrhosis.

Clinical Study Identifier: NCT03990753

Find a site near you

Start Over

Recruitment Status: Open


Brief Description Eligibility Contact Research Team


Receive Emails About New Clinical Trials!

Sign up for our FREE service to receive email notifications when clinical trials are posted in the medical category of interest to you.