This open-label phase II trial studies how well niraparib works in treating patients with advanced, metastatic melanoma with the homologous recombination (HR) pathway gene mutation / alteration. Niraparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. The trial is designed to assess the efficacy and safety of niraparib in patients with HR mutation/ alteration whose disease progressed on prior immunotherapy and/or BRAF-targeting therapy.
Treatment with PARP inhibitors could represent a novel opportunity to selectively kill a subset of cancer cells with deficiencies in DNA repair pathways. For example, a tumor arising in a patient with a germline BRCA mutation (gBRCAmut) has a defective homologous recombination DNA repair pathway and would be increasingly dependent on NHEJ, alt-NHEJ, and BER for maintenance of genomic integrity. PARP inhibitors block alt-NHEJ and BER, forcing tumors with BRCA deficiencies to use the error-prone NHEJ to fix double-strand breaks. Non-BRCA deficiencies in homologous recombination DNA repair genes could also enhance tumor cell sensitivity to PARP inhibitors. The rationale for anticancer activity in a subset of non-gBRCAmut tumors is that they share distinctive DNA repair defects with gBRCAmut carriers, a phenomenon broadly described as "BRCAness." DNA repair defects can be caused by germline or somatic alterations to the homologous recombination DNA repair pathway. Homologous recombination is a complex pathway, and several genes other than BRCA1 and BRCA2 are required either to sense or repair DNA double-strand breaks via the homologous recombination pathway. Therefore, PARP inhibitors are also selectively cytotoxic for cancer cells with deficiencies in DNA repair proteins other than BRCA1 and BRCA2.
In melanoma, genetic HR mutation/ alterations are rather common. Retrospective data showed that nearly 30.5% of cutaneous melanoma harbors a mutation in at least 1 of the HR genes in their tumor. The most commonly altered gene was ARID2, followed by ARID1A, FANCA, ATM, BRCA1, ATRX and BRCA2, ATR, BRCA1 and BRIP1.
These findings provide a strong rationale to evaluate the clinical efficacy of a PARP inhibitor in patients with advanced cancers with HR mutation/alteration or HR deficiency. Therefore, the investigators propose a phase II study of niraparib in patients with advanced melanoma with genetic homologous recombination mutation/ alteration.
In this clinical study, clinical efficacy of niraparib will be evaluated by assessing an objective clinical response rate in patients with advanced, metastatic melanoma with the homologous recombination (HR) pathway gene mutation / alteration. All participating patients will receive niraparib 300 mg a day until disease progresses or they experience intolerable toxicity.
Condition | Metastatic Melanoma |
---|---|
Treatment | Niraparib |
Clinical Study Identifier | NCT03925350 |
Sponsor | California Pacific Medical Center Research Institute |
Last Modified on | 4 February 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.