This cross-over study will compare the asynchrony index between standard manual ventilator settings, optimized manual ventilator settings, and automated ventilator setting in intensive care patients ventilated in non-invasive ventilation with a high asynchrony index. The hypothesis is that both manual optimized ventilator settings and automated ventilator settings are associated with a lower patient-ventilator asynchrony index as compared to manual standard ventilator settings.
A randomized cross-over design method will be used. Patient requiring NIV with an asynchrony index over 35% will be included. An esophageal catheter with a balloon will be inserted to monitor esophageal pressure. Patients will be ventilated during 3 periods of 30 min, with 10 minutes of washout in between. Recordings of airway pressure, airway flow, and esophageal pressure will be analyzed by two investigators blinded of the trigger settings.
The primary outcome will be the asynchrony index. The secondary outcome will be the ineffective inspiratory effort index, autotrigering index, double triggering index, inspiratory trigger delay, cycling delay, total time spent in asynchrony, patient comfort, and blood gas results.
Non-invasive ventilation (NIV) is used in 35% of patient admitted in intensive care unit (ICU) with a failure rate of 10 to 70% depending on the indication and clinician experience. Patient-ventilator asynchrony is a frequent cause of NIV failure. Therefore, optimizing patient-ventilator synchronization is important for its comfort, tolerance, and efficacy. An optimal patient-ventilation is achieved when the mechanical breath provided by the ventilator match the patient inspiratory effort. The ratio between the number of asynchronies divided by the number of patient inspiratory effort define the asynchrony index (AI). AI over 10% is considered as severe and occurs in 30 to 43% of patients ventilated in NIV. Patient ventilator asynchronies occurs because ventilator settings of inspiratory and expiratory triggers remain constant in patient with variable respiratory drive, and unintentionnals leaks that are difficult to control in NIV. Thus using an automatic adjustment of inspiratory and expiratory triggers setting according to patient effort and unintentional leaks may decrease the number of patient-ventilator asynchronies. This cross-over study will compare the asynchrony index between standard manual ventilator settings, optimized manual ventilator settings, and automated ventilator setting in intensive care patients ventilated in non-invasive ventilation with a high asynchrony index. The hypothesis is that both manual optimized ventilator settings and automated ventilator settings are associated with a lower patient-ventilator asynchrony index as compared to manual standard ventilator settings.
A randomized cross-over design method will be used. Patient requiring NIV with an asynchrony index over 30% will be included. An esophageal catheter with a balloon will be inserted to monitor esophageal pressure. Patients will be ventilated during 3 periods of 30 min, with 10 minutes of washout in between. Recordings of airway pressure, airway flow, and esophageal pressure will be analyzed by two investigators blinded of the trigger settings.
The primary outcome will be the asynchrony index. The secondary outcome will be the ineffective inspiratory effort index, autotrigering index, double triggering index, inspiratory trigger delay, cycling delay, total time spent in asynchrony, patient comfort, and blood gas results.
The sample size was calculated from the total asynchrony index (primary outcome). Patients with an asynchrony index over 30% in using manual standard ventilator settings will be included. Considering an asynchrony index of 30 ± 15 % in manual standard ventilator settings with a clinically significant objective to reduce the asynchrony index to 15% in manual optimized ventilator settings and automated ventilator settings, a sample size of 30 patients is required with a risk at 0.05 and a power at 80%. Therefore, 35 patients are planned.
Condition | Acute Respiratory Failure |
---|---|
Treatment | Optimized, Automated |
Clinical Study Identifier | NCT03787173 |
Sponsor | Centre Hospitalier Intercommunal de Toulon La Seyne sur Mer |
Last Modified on | 24 October 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.