Nocturnal Oxygen Needs and Central Sleep Apnea in Patients With Chronic Heart Failure. (HO2F)

  • STATUS
    Recruiting
  • End date
    Dec 31, 2022
  • participants needed
    14
  • sponsor
    Laval University
Updated on 25 April 2022
ejection fraction
heart failure
heart disease
oximetry
apnea
cheyne-stokes respiration
central sleep apnea

Summary

The aims of this study are to 1) determine the optimal levels of O2 flow which prevent nocturnal O2 desaturation while minimizing periods of hyperoxia during the course of nocturnal oxygen therapy (NOXT) in heart failure patients with reduced ejection fraction (HFrEF) patients with CSA/CSR; 2) document whether within-patient EO2F values change over time during NOXT, and identify factors which predict changes in EO2F; and 3) examine how well a conventional stepwise titration procedure compares to a breath by breath titration using an automated O2 titration system in terms of targeted flow rate and night time oxygenation (oxygen desaturation index, time spent at specific SpO2 targets).

Description

Sleep-related breathing disorders (obstructive and central) are highly prevalent in Heart failure (HF) patients and are associated with an increase in morbidity and mortality. Nocturnal oxygen therapy (NOT) reduces the frequency of central breathing events by 75 % and prevents nocturnal desaturation in patients with HF. Considering that the amount of nocturnal desaturation is a better predictor of mortality than the apnea+hypopnea index (AHI) in this population, one should expect NOT to have a positive impact on survival in these patients. In the four randomized clinical trials where the effects of O2 on left ventricular function was assessed, 2 reported a significant increase in LVEF after 3 months of NOT. NOT was also found to positively impact on other important predictive factors of mortality such as sympathetic activity and VO2 max. These mitigated results could be accounted by the fact that a fixed O2 flow was empirically used (2 to 4 L/min) in the majority of studies. This may impede the beneficial effects of NOT for two reasons. First, in patients with HF, oxygen is associated with a dose-related detrimental hemodynamic effects (i.e. increase in vascular resistance and reduction in cardiac output and stroke volume). Therefore, the lowest O2 flow that prevents nocturnal desaturation should be used to minimize the detrimental effects of hyperoxia. On the other hand, there are evidences that the frequency and/or severity of sleep-disordered breathing may change overtime in CHF patients leading to insufficient correction of nocturnal desaturation during the course of NOT. Therefore, NOT should be preceded by an oxygen titration procedure to determine the lowest O2 flow that prevents nocturnal desaturation. This can be done with a stepwise night-to-night increase in O2 flow until correction of nocturnal desaturation. However, another approach would be to prevent event-by-event desaturations and to prevent hyperoxia during periods of normal sleep and wakefulness. On the other hand, the stability in O2 needs overtime in these patients is unkown. The aims of this study are 1) to document if the level of O2 flow preventing nocturnal desaturation changes during the course of NOT in CHF patients with CSA/CSR and 2) to examine the ability of automated O2 titration (FreeO2, Oxynov, Quebec, Canada) to determine O2 needs in HF patients with CSA/CSR when compared to the gold standard titration procedure.

Details
Condition Chronic Heart Failure, Central Sleep Apnea
Treatment Titration of nocturnal oxygen needs to prevent desaturations
Clinical Study IdentifierNCT03254212
SponsorLaval University
Last Modified on25 April 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

patients with heart failure and reduced ejection fraction (LVEF < 45%) due to ischemic or hypertensive heart disease
moderate to severe central sleep apnea/cheyne stokes respiration
treatment should be stable for the last 30 days preceding entry into the study

Exclusion Criteria

O2 /CPAP therapy
active smoking
primary valvular heart disease
nasal obstruction
BMI ≥ 32 Kg/m2
cardiac surgery/transient ischemic attack/stroke/resynchronization therapy within 3 months
nocturnal hypoventilation
receiving opiates or methadone medication
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

0/250

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note