Inhaled Nitric Oxide in Brain Injury

  • STATUS
    Recruiting
  • participants needed
    38
  • sponsor
    University of Cincinnati
Updated on 28 January 2023
mechanical ventilation
traumatic brain injury
coma

Summary

This study will evaluate the changes in respiratory mechanics following traumatic brain injury and determine the effect of inhaled nitric oxide on gas exchange.

Description

Intubation and mechanical ventilation are common treatments in the care of patients with traumatic brain injury (TBI). Intubation allows for airway control and facilitates removal of respiratory secretions. Mechanical ventilation allows control of arterial carbon dioxide to aid in control of intracranial pressure. Recent evidence suggests that lung protective ventilation (tidal volumes of 6 ml/kg of predicted body weight and moderate positive end expiratory pressure) improves outcomes following brain injury and reduces brain-lung cross talk.

The treatment of respiratory failure in TBI must balance the need to improve lung function with the negative consequences of increased intrathoracic pressure on mean arterial pressure, intracranial pressure and venous return. Traditional treatment of increasing positive end expiratory (PEEP) and mean airway pressure then, represent competing interests. Methods for improving arterial oxygenation while avoiding negative hemodynamic effects are needed.

The impact of head injury on respiratory mechanics has been studied in just a few clinical investigations. (1-3) Of note, the earliest of these noted that the ventilation perfusion (V/Q) matching following TBI was not the result of lung collapse or parenchymal lung disease but secondary to alterations in perfusion. There are three possibilities for this finding:

  1. redistribution in regional perfusion, which is partially mediated by the hypothalamus
  2. pulmonary microembolism, leading to increased dead space
  3. lung surfactant depletion due to excessive sympathetic stimulation and hyperventilation.

The introduction of inhaled pulmonary vasodilators such as inhaled nitric oxide or aerosolized epoprostenol offer an opportunity to improve oxygenation in patients with TBI without increasing airway pressures in the face of V/Q inequalities.

This study will evaluate the changes in respiratory mechanics following TBI and determine the effect of inhaled nitric oxide on gas exchange.

Details
Condition Traumatic Brain Injury
Treatment Placebo, Inhaled Nitric Oxide
Clinical Study IdentifierNCT03260569
SponsorUniversity of Cincinnati
Last Modified on28 January 2023

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note