Last updated on June 2019

Denosumab and Nivolumab Combination as 2d-line Therapy in Stage IV NSC Lung Cancer With Bone Metastases (DENIVOS)


Brief description of study

Bone metastases are common in Non-Small Cell Lung Cancer (NSCLC). They most often occur during disease progression. It is thought that more than half of the patients with bone metastases will have at least 1 skeletal-related event (SRE, i.e. pathological fractures, medullary compression, analgesic radiotherapy, preventive and/or analgesic surgery and hypercalcemia).

Expert and medical Society guidelines, notably European Society for Medical Oncology in 2014, then in 2016, recommended using anti-resorptive agents (bisphosphonates or denosumab) to prevent SREs, attenuate pain and improve the quality of life, and decrease the medical-economic impact of this major metastatic site. Denosumab was accorded marketing authorization in France in 2011 as an anti-resorptive agent for bone metastases to delay the occurrence of SREs in lung-cancer patients.

Immunotherapy, notably immune-checkpoint inhibitors, like nivolumab (anti-programed death-1), has recently become an integral part of the therapeutic arsenal against NSCLCs. Nivolumab was accorded marketing authorization based on the phase III CHECKMATE 017 (squamous cell NSCLCs) and CHECKMATE 057 (non-squamous cell NSCLCs) trials versus docetaxel, after the phase II CHECKMATE 063 trial.

The denosumab-nivolumab combination is commonly used in current practice but has not been evaluated prospectively. The aim of this trial is to evaluate the combination of denosumab and nivolumab in second line of NSCLC with bone metastases.

Detailed Study Description

Bone metastases are common in Non-Small Cell Lung Cancer (NSCLC), affecting 30-65% of the patients, depending on the series. They most often occur during disease progression (59.7% in the French Lung Cancer Group trial). The frequency of skeletal-related events (SREs) (pathological fractures, medullary compression, analgesic radiotherapy, preventive and/or analgesic surgery and hypercalcemia) is high. It is thought that more than half of the patients with bone metastases will have at least 1 SRE, with rates ranging from 55% to 62%.

Expert and medical Society guidelines, notably European Society for Medical Oncology in 2014, then in 2016, recommended using anti-resorptive agents (bisphosphonates or denosumab) to prevent SREs, attenuate pain and improve the quality of life, and decrease the medical-economic impact of this major metastatic site.

Denosumab is a humanized monoclonal antibody. It mimics the action of osteoprotegerin (OPG), thereby inhibiting osteoclastogenesis by blocking the binding of the receptor activator of nuclear factor-kappaB (RANK) to its ligand (RANKL), and thus interrupts the vicious circle between tumor cells and bone. RANK is a transmembrane protein expressed on osteoclasts, and its ligand, RANKL, is soluble and secreted by osteoblasts. Denosumab was accorded marketing authorization in France in 2011 as an anti-resorptive agent for bone metastases to delay the occurrence of SREs in lung-cancer patients. The results of 3 phase III studies evaluating the place of denosumab versus zoledronic acid have been published. Lung cancers were included in the trial examining solid tumors (other than breast and prostate) and multiple myeloma, and represented 40% of the population. In a non-inferiority analysis, the primary objective was reached with denosumab prolonging by approximately 4 months the time to the first SRE (20.6 versus 16.3 months, hazard ratio 0.84 [95% confidence interval 0.71-0.98] p=0.0007). In the lung-cancer subgroup, this difference did not reach significance (hazard ratio 0.85 [95% confidence interval 0.65-1.12]). In contrast, the exploratory analysis of that subgroup showed overall survival prolonged by 1.2 months for the denosumab arm versus zoledronic acid (8.9 versus 7.7 months, hazard ratio 0.8 [95% confidence interval 0.67-0.95] p=0.01).

Immunotherapy, notably immune-checkpoint inhibitors (ICPIs), like nivolumab (anti-programed death-1 (PD-1)), has recently become an integral part of the therapeutic arsenal against NSCLCs. Nivolumab was accorded marketing authorization based on the phase III CHECKMATE 017 (squamous cell NSCLCs) and CHECKMATE 057 (non-squamous cell NSCLCs) trials versus docetaxel, after the phase II CHECKMATE 063 trial. The search for a biomarker predictive of the response to immunotherapy is becoming more-and-more crucial, so as not to expose patients who risk early cancer hyper-progression. Immunohistochemical labeling of PD-1 ligand (PD-L1) on tumor cells ( infiltrating the stroma) is the most studied and reliable biomarker. Knowing its status has become indispensable in immunotherapy trials because an elevated PD-L1 has been correlated to a better response. Prescribing second-line nivolumab is not conditioned by the PD-L1 status because those trials had not foreseen stratification according to this criterion's status. However, post-hoc analysis of PD-L1 in the CHECKMATE 057 trial on non-squamous cell NSCLCs showed prolonged overall survival for patients with PD-L1-positive tumors, whether the positivity threshold was 1%, 5% or 10%. Thus, knowing the PD-L1 status is necessary to interpret the results of immunotherapy trials.

The RANK-RANKL system was studied in preclinical osteoimmunology models. It is expressed by certain cells, notably antigen-presenting cells, such as dendritic cells or lymphocytes, essential for the adaptive immunity function solicited by immunotherapy. It is part of the tumor necrosis factor receptor (TNF-R) family and is implicated in the interactions between dendritic cells and lymphocytes. The RANK-RANKL role in the development and function of regulatory T cells (Tregs) remains poorly elucidated. Information on the interaction of the RANK-RANKL system and adaptive immunity obtained with the preclinical models is discordant and rare. A case report on a patient with melanoma bone metastases treated with denosumab and ipilimumab (ICPI of the anti-cytotoxic T-lymphocyte antigen 4 type) obtained a promising carcinological outcome, without any sign of deleterious interaction.

The aim of this trial is to evaluate the combination of denosumab and nivolumab in second line of NSCLC with bone metastases.

Clinical Study Identifier: NCT03669523

Find a site near you

Start Over