Wearable Emotion Prosthetics for Post Traumatic Stress Disorder

  • STATUS
    Recruiting
  • End date
    Dec 18, 2022
  • participants needed
    100
  • sponsor
    University of Pittsburgh
Updated on 1 February 2021

Summary

Involuntary stress reactions including hyper-reactivity and dissociation are key diagnostic features of many psychiatric disorders, are difficult to treat, and predict poor outcomes in conventional and neurobehavioral interventions. Here, we evaluate the extent to which a novel intervention, Tuned Vibroacoustic Stimulation (TVS), capitalizing on a preserved neurocircuitry for sympathetic and parasympathetic system activity can be used to modify arousal responses, overriding otherwise prepotent negative stress reactions.

PTSD has been characterized by dysregulated responses to stress as a result of severe acute or chronic trauma resulting in significantly impaired functioning, quality of life, and morbidity/mortality. Physiologically, PTSD severity has been associated with elevated sympathetic tone and low heart rate variability suggesting that parasympathetic tone is suppressed. Lower heart rate variability specifically, as a measure of parasympathetic tone, is closely associated with impaired performance and resilience. In our first study (in review), we showed that in some individuals, TVS is associated with increased heart rate variability and performance under stress along with reduced subjective stress. These results suggest that TVS could provide some therapeutic benefit in PTSD.

N=100 individuals with mild-moderate PTSD (as assessed by PCL-5/CAP5), at least half of which are military Veterans, will be assessed physiologically during active interventions. Mechanisms of attentional focus on cognitive and emotional stimuli will be assessed. Participants will also have a real-world intervention to determine if TVS helps alleviate stress, symptoms, and medication burden in the real world when stress has been identified. Success will suggest a new intervention pathway for a traditionally treatment-resistant dimension of psychopathology.

Description

This protocol will examine and elucidate a mechanistic model for tuned vibroacoustic stimulation (TVS), an exteroceptive cue that has been shown to reduce subjective and physiological indicators of stress and increase behavioral performance in healthy subjects. In this study, we will test whether TVS can reduce subjective and physiological signs of stress, improve performance, alleviate symptoms, and reduce medication burden in adults with post-traumatic stress disorder (PTSD). This protocol will also examine whether software that cues TVS in response to biological stress markers helps users detect, regulate, and develop long-term resilience to stress outside of the laboratory.

Aim 1: Examine how TVS alters calmness and stress markers. Our overall hypothesis is that TVS, in combination with some other task, increases performance on that task by decreasing stress and increasing emotion regulation.

Hypothesis 1: TVS during an attention task will lead to decreased GSR, increased HRV, and increases in prefrontal gamma and theta band EEG, along with improved behavioral performance on a focused attention, working memory and emotional information processing task. TVS will also reduce subjective stress levels.

Aim 2: Examine the extent to which software, which monitors real time biological stress markers of users, and in response, automatically signals wearable hardware to deliver TVS when user is stressed, will be able to help users detect, regulate, and develop long-term resilience to stress outside the laboratory for two weeks.

Hypothesis 2.1: Evaluate whether subjects with PTSD in the real world will use our software to detect and alert them of stress dynamically and if this is associated with stress regulation.

Hypothesis 2.2: Examine whether TVS is associated with stress regulation. Hypothesis 2.3: Examine whether TVS is associated with reduction in PTSD symptoms and, possibly, medication burden.

Over 39 million Americans suffer from excessive chronic stress, which can be psychologically and physically debilitating (Salleh, 2008). Untreated chronic stress plays a role in the development of major illnesses such as cardiovascular disease, obesity, anxiety and depression (Dallman et al., 2006; Swaab, Bao, & Lucassen, 2005). Post-traumatic stress disorder (PTSD), is a severe mental illness that impacts millions of veterans and civilians nationwide. Existing treatments for chronic stress and PTSD are often ineffective, have adverse effects, and are prohibited by cost, time-commitment, and accessibility, resulting in high rates of substance abuse and suicide (Jonas et al., 2013; Watts et al., 2013). Stress in general, and PTSD more specifically, are characterized by hyper-reactivity in the sympathetic nervous system which is associated with increased arousal and vigilance, and compromised reactivity of the parasympathetic nervous system, which helps to regulate emotion and stress responses (Kibler, Tursich, Ma, Malcolm, & Greenbarg, 2014; Lehrer & Gevirtz, 2014).

PTSD has been characterized by dysregulated responses to stress as a result of severe acute or chronic trauma resulting in significantly impaired functioning, quality of life, and morbidity/mortality. Physiologically, PTSD severity has been associated with elevated sympathetic tone and low heart rate variability suggesting that parasympathetic tone is suppressed. HRV is widely used as a biomarker for the coordinated activity of the sympathetic and parasympathetic nervous symptom. A calmer, less stressful state is typically marked by increased HRV, likely attributed to respiration based parasympathetic stimulation (Grossman & Taylor, 2007). GSR is also a reliable index for sweat gland activity and changes in activation level of the sympathetic nervous system, and GSR usually increases with higher levels of stress (Mohan, Sharma, & Bijlani, 2011). EEG changes, such as elevated prefrontal gamma and theta, have also been associated with state of relaxed alertness. Our initial data (submitted) suggest that for some individuals, TVS can boost heart rate variability and performance under stress while reducing subjective stress. These results suggest that TVS could provide some therapeutic benefit in PTSD.

Large scientific literature supports the role of vibration in regulating stress physiology (Takahashi, Ohashi, & Yokoyama, 2011; M. Uchikune, 2002; M. Uchikune, 2004). For example, slow whole-body vibration, in the 0.01 to 0.3 Hz range, is associated with increased ratings of pleasantness and increased parasympathetic tone (M. Uchikune, 2002; M. Uchikune, 2004). Stimulation at about 100 Hz has been shown to activate the posterior insula (Coghill et al., 1994) which is associated with increased attention to interoception, as promoted in many meditative traditions. Transcutaneous targets for the vibration frequencies have also been identified, including stellate ganglion and vagus nerve (Cipriano et al., 2014; Fang et al., 2016).

In this study, we will be testing the potential for TVS to increase well-being (subjective calmness, increased performance, and physiological reactivity) in the PTSD population. Positive results would suggest that reduction in symptomatology may be possible without effort, and in lieu of specific interventions with medications or psychotherapy. A wearable form of TVS technology will be examined in a real-world setting. We will use ambulatory assessment to detect physiological indications of stress unique to each user and to provide user-optimized TVS, examining whether it increases parasympathetic nervous system reactivity in response to stress, thus decreasing subjective stress just as a user's stress begins to increase.

Details
Condition Health behavior
Treatment No active intervention, Guided mindfulness meditation, Tuned Vibroacoustic Stimulation (TVS)
Clinical Study IdentifierNCT03529981
SponsorUniversity of Pittsburgh
Last Modified on1 February 2021

Eligibility

Yes No Not Sure

Inclusion Criteria

Is your age between 18 yrs and 58 yrs?
Gender: Male or Female
Do you have Health behavior?
Do you have any of these conditions: Do you have Health behavior??
Male/female who are 18 - 58 years of age
For PTSD participants, must meet current DSM-V criteria for PTSD based on the PCL-5 (Score > 33) and MINI PTSD Scale (administered in lab)
If taking psychoactive medications, must be on a stable regimen for 3 weeks or more
Must have a functioning smartphone with Apple iOS or Android

Exclusion Criteria

Refusal or inability to provide informed consent
Current suicidal or homicidal ideation with intent and/or plan that, in the judgment of the investigator, should be the focus of treatment
Current or recent (within the last 8 weeks) physically aggressive behavior
Meets current DSM-V criteria for substance dependence ((serious substance use in DSM-V parlance, not in remission) except nicotine and caffeine), traumatic brain injury, bipolar affective disorder, schizophrenia or any psychotic disorder
Has unstable or serious medical illness, including history of stroke, epileptic disorder, or unstable cardiac disease, that would interfere with participation in treatment
Taking medications that could affect thinking which must be taken on the day of testing, or dependence on psychoactive drugs (prescription or non-prescription) that could affect thinking. That is, participants need to be able to think clearly to complete the proposed information processing tasks. And they need to be able to learn to be able to make use of the intervention. Examples of drugs which could affect performance on cognitive tasks or the administered physiological measures include beta-blockers, benzodiazepines, antipsychotics, stimulants (except for treatment of ADD/ADHD), narcotics, and anti--Parkinsonian drugs
Severe cognitive impairment or severe trauma
Unable to comprehend or communicate in English, and unable to complete questionnaires written in English
Having any eye problems or difficulties in corrected vision or hearing, including poor color vision
Having a North American Adult Reading Test (NAART) equivalent FSIQ < 85
Severe or poorly controlled concurrent medical disorders or require medication that could cause negative thinking
Specific Exclusions for acoustic vibration include
\-- Any electrical implant (pacemaker, vagus nerve stimulator, etc)
Clear my responses

How to participate?

Step 1 Connect with a site
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar
Name

Primary Contact

site
Name

Phone Email

0/250
Please verify that you are not a bot.

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note