Last updated on November 2019

Adoptive Cellular Therapy in Pediatric Patients With High-grade Gliomas


Brief description of study

It is believed that the body's immune system protects the body by attacking and killing tumor cells. T-lymphocytes (T-cells) are part of the immune system and can attack when they recognize special proteins on the surface of tumors. In most patients with advanced cancer, T-cells are not stimulated enough to kill the tumor. In this research study, we will use a patient's tumor to make a vaccine which we hope will stimulate T-cells to kill tumor cells and leave normal cells alone.

High grade gliomas (HGGs) are very aggressive and difficult for the body's immune system to attack. Before T-cells can become active against tumor cells, they require strong stimulation by special "stimulator" cells in the body called Dendritic Cells (DCs) which are also part of the immune system. DCs can recognize the cancer cells and then activate the T lymphocytes, and create this strong stimulation.

The purpose of this research study is to learn whether anti-tumor T-cells and anti-tumor DC vaccines can be given safely. Most importantly, this study is also to determine whether the T-cells and DC vaccines can stimulate a person's immune system to fight off the tumor cells in the brain.

Detailed Study Description

It is believed that the body's immune system protects the body by attacking and killing tumor cells. T-lymphocytes (T-cells) are part of the immune system and can attack when they recognize special proteins on the surface of tumors. But in most patients with advanced cancer, T-cells are not stimulated enough to kill the tumor. In this research study, we will use your tumor to make a vaccine which we hope will stimulate your T-cells to kill tumor cells and leave your normal cells alone.

High grade gliomas (HGGs) are very aggressive and difficult for the body's immune system to attack. Before T-cells can become active against tumor cells, they require strong stimulation by special "stimulator" cells in the body called Dendritic Cells (DCs) which are also part of the immune system. DCs can recognize the cancer cells and then activate the T lymphocytes, and create this strong stimulation.

The purpose of this research study is to learn whether anti-tumor T-cells and anti-tumor DC vaccines can be given safely. Most importantly, this study is also to determine whether the T-cells and DC vaccines can stimulate your immune system to fight off the tumor cells in your brain. When the vaccine for this study is made, dendritic cells will be loaded with genetic material called RNA (ribonucleic acid) from your tumor to stimulate the dendritic cells. The vaccine has two components given at different times after chemoradiation and throughout chemotherapy cycles. The first part, the DC vaccine, involves RNA loaded dendritic cells that are given under the skin at several time points in the study and the second part, xALT vaccine, is a single infusion of tumor-specific T cells delivered through one of two peripheral IV catheters that are placed prior to infusion. This vaccine is investigational which means that it is not approved by the US Food and Drug Administration (FDA) and is being tested in research studies.

It is hoped that by injecting the DC vaccine into your skin and infusing the T-cells into your blood, your immune system will be activated against the tumor. Once it is activated against the tumor, your immune system may recognize and attack the tumor cells in your brain and not attack normal cells. Use of a vaccine that stimulates your immune system is called immunotherapy.

Clinical Study Identifier: NCT03334305

Find a site near you

Start Over