Adoptive Cellular Therapy in Pediatric Patients With High-grade Gliomas

  • STATUS
    Recruiting
  • End date
    May 21, 2026
  • participants needed
    10
  • sponsor
    University of Florida
Updated on 21 August 2021
cancer
corticosteroids
karnofsky performance status
MRI
neutrophil count
tumor cells
malignant glioma
cellular therapy

Summary

It is believed that the body's immune system protects the body by attacking and killing tumor cells. T-lymphocytes (T-cells) are part of the immune system and can attack when they recognize special proteins on the surface of tumors. In most patients with advanced cancer, T-cells are not stimulated enough to kill the tumor. In this research study, we will use a patient's tumor to make a vaccine which we hope will stimulate T-cells to kill tumor cells and leave normal cells alone.

High grade gliomas (HGGs) are very aggressive and difficult for the body's immune system to attack. Before T-cells can become active against tumor cells, they require strong stimulation by special "stimulator" cells in the body called Dendritic Cells (DCs) which are also part of the immune system. DCs can recognize the cancer cells and then activate the T lymphocytes, and create this strong stimulation.

The purpose of this research study is to learn whether anti-tumor T-cells and anti-tumor DC vaccines can be given safely. Most importantly, this study is also to determine whether the T-cells and DC vaccines can stimulate a person's immune system to fight off the tumor cells in the brain.

Description

It is believed that the body's immune system protects the body by attacking and killing tumor cells. T-lymphocytes (T-cells) are part of the immune system and can attack when they recognize special proteins on the surface of tumors. But in most patients with advanced cancer, T-cells are not stimulated enough to kill the tumor. In this research study, we will use your tumor to make a vaccine which we hope will stimulate your T-cells to kill tumor cells and leave your normal cells alone.

High grade gliomas (HGGs) are very aggressive and difficult for the body's immune system to attack. Before T-cells can become active against tumor cells, they require strong stimulation by special "stimulator" cells in the body called Dendritic Cells (DCs) which are also part of the immune system. DCs can recognize the cancer cells and then activate the T lymphocytes, and create this strong stimulation.

The purpose of this research study is to learn whether anti-tumor T-cells and anti-tumor DC vaccines can be given safely. Most importantly, this study is also to determine whether the T-cells and DC vaccines can stimulate your immune system to fight off the tumor cells in your brain. When the vaccine for this study is made, dendritic cells will be loaded with genetic material called RNA (ribonucleic acid) from your tumor to stimulate the dendritic cells. The vaccine has two components given at different times after chemoradiation and throughout chemotherapy cycles. The first part, the DC vaccine, involves RNA loaded dendritic cells that are given under the skin at several time points in the study and the second part, xALT vaccine, is a single infusion of tumor-specific T cells delivered through one of two peripheral IV catheters that are placed prior to infusion. This vaccine is investigational which means that it is not approved by the US Food and Drug Administration (FDA) and is being tested in research studies.

It is hoped that by injecting the DC vaccine into your skin and infusing the T-cells into your blood, your immune system will be activated against the tumor. Once it is activated against the tumor, your immune system may recognize and attack the tumor cells in your brain and not attack normal cells. Use of a vaccine that stimulates your immune system is called immunotherapy.

Details
Condition Glioma, High Grade Glioma, Gliomas, malignant glioma
Treatment Td Vaccine, TTRNA-xALT, TTRNA-DC vaccines with GM-CSF, Dose-intensified TMZ, Autologous Hematopoietic Stem cells (HSCs)
Clinical Study IdentifierNCT03334305
SponsorUniversity of Florida
Last Modified on21 August 2021

Eligibility

How to participate?

Step 1 Connect with a site
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar
Name

Primary Contact

site
Name

0/250
Preferred Language
Other Language
Please verify that you are not a bot.

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note