More than 250 million courses of antibiotics are prescribed annually in the ambulatory care setting in the United States alone, including more than 40 million in children under 18 years of age. The perception that antibiotic use has minimal attendant adverse side effects contributes to the over-utilization of antibiotics in clinical circumstances when they are not strictly indicated. We have learned much about the human microbiome. The emerging view is of profound life-long bi-directional interactions between our microbiota and our cells. Perturbations in the microbiota affect metabolic, immune, and cognitive physiology in experimental animal models. When a person takes an antibiotic, the antibiotic diffuses via the blood into all body compartments, selecting for resistance. We propose to examine the effects of two commonly used antibiotics (the beta-lactam, amoxicillin and the macrolide azithromycin) on human microbial populations and on metabolic and immune physiology, studying healthy human volunteers in a randomized controlled clinical trial at the NIH Clinical Center. Our hypothesis is that in addition to acutely perturbing the human microbiome, these agents will have measurable metabolic and immunologic effects, with residual effects in the weeks that follow. To test this hypothesis, we will assess the effects of a brief therapeutic course of antibiotics on microbiome and metagenome composition. After an initial evaluation period, antibiotics will be given for 7 days or 5 days (depending on the antibiotic), and there will be a post-treatment evaluation. A control group will receive no drug intervention. Specimens will be obtained from multiple sites at each of 10 time points occurring before, during, and after antibiotic administration, and used for estimating bacterial and fungal composition and gene content. We will also assess the effects of the antibiotic course on markers of innate and adaptive immunity as well as markers of metabolic and hormonal physiology. A subgroup of subjects will be studied in the clinical center metabolic chamber to assess 24-hour energy expenditure and its components (sleeping, diet-induced, and activity energy expenditure), as well as macronutrient oxidation rates (carbohydrate, fat, and protein), during 3 of the 10 study visits. In addition to the primary data analyses, we will build a model that integrates the temporal data to begin to understand the complex intertwined physiology between microbiome and host.
More than 250 million courses of antibiotics are prescribed annually in the ambulatory care setting in the United States alone, including more than 40 million in children under 18 years of age. The perception that antibiotic use has minimal attendant adverse side effects contributes to the over-utilization of antibiotics in clinical circumstances when they are not strictly indicated. We have learned much about the human microbiome. The emerging view is of profound life-long bi-directional interactions between our microbiota and our cells. Perturbations in the microbiota affect metabolic, immune, and cognitive physiology in experimental animal models. When a person takes an antibiotic, the antibiotic diffuses via the blood into all body compartments, selecting for resistance. We propose to examine the effects of two commonly used antibiotics (the beta-lactam, amoxicillin and the macrolide azithromycin) on human microbial populations and on metabolic and immune physiology, studying healthy human volunteers in a randomized controlled clinical trial at the NIH Clinical Center. Our hypothesis is that in addition to acutely perturbing the human microbiome, these agents will have measurable metabolic and immunologic effects, with residual effects in the weeks that follow. To test this hypothesis, we will assess the effects of a brief therapeutic course of antibiotics on microbiome and metagenome composition. After an initial evaluation period, antibiotics will be given for 7 days or 5 days (depending on the antibiotic), and there will be a post-treatment evaluation. A control group will receive no drug intervention. Specimens will be obtained from multiple sites at each of 10 time points occurring before, during, and after antibiotic administration, and used for estimating bacterial and fungal composition and gene content. We will also assess the effects of the antibiotic course on markers of innate and adaptive immunity as well as markers of metabolic and hormonal physiology. A subgroup of subjects will be studied in the Clinical Center metabolic chamber to assess 24-hour energy expenditure and its components (sleeping, diet-induced, and activity energy expenditure), as well as macronutrient oxidation rates (carbohydrate, fat, and protein), during 3 of the 10 study visits. In addition to the primary data analyses, we will build a model that integrates the temporal data to begin to understand the complex intertwined physiology between microbiome and host.
Condition | Normal Physiology, Healthy |
---|---|
Treatment | Azithromycin, Control, Amoxicillin |
Clinical Study Identifier | NCT02707042 |
Sponsor | National Institute of Allergy and Infectious Diseases (NIAID) |
Last Modified on | 20 July 2022 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.