Calcific aortic stenosis (AS) has become the most common cardiac disease after coronary artery disease and hypertension. Unfortunately no medical therapies have been proven to decrease either the progression of valve stenosis or the resulting adverse effects on myocardial remodeling and function. In light of the studies performed in PROGRESSA, it becomes obvious that: i) AS is a complex and actively regulated process that involves the interaction of several pathways including lipid infiltration and retention, chronic inflammation, osteogenic activation, and active mineralization within the valvular tissues; ii) AS is not a disease strictly limited to the aortic valve but rather a systemic disease that often involves calcification and stiffening of the aorta and impairment of LV function as a consequence of pressure overload. Our findings suggest that the dysmetabolic milieu linked to visceral obesity may accelerate the deterioration of the structure and function not only of the aortic valve but also of the aorta and of the left ventricle. These findings open new avenues of research and provide strong impetus for the elaboration of prospective studies focusing on the "valvulo-metabolic risk" in AS.
The general hypotheses are: The metabolic abnormalities linked to visceral obesity accelerate (1) the progression of valvular calcification and stenosis, aortic calcification and stiffness; (2) the progression of myocardial fibrosis and dysfunction.
The general objectives of the study are to elucidate the mechanisms implicated in the pathogenesis of AS and to identify the metabolic factors that determine the progression of: i) aortic valve calcification and stenosis; ii) myocardial fibrosis and dysfunction; and iii) clinical outcomes.
This study will contribute to identifying the key metabolic determinants of AS progression and will pave the way for the future development of non surgical therapies for this disease. The results of this study would provide strong support to the realization of randomized trial to test the efficacy of lifestyle modification program or new pharmacological treatment aiming at the reduction of visceral fat and associated metabolic abnormalities in the AS population. Furthermore, this study will contribute to the identification of novel blood and imaging biomarkers of faster disease progression, which will help to optimize risk stratification and timing of AVR in the AS population.
The hypotheses are: (1) The metabolic abnormalities linked to visceral obesity increase: i) the progression of aortic valve calcification and stenosis, of aortic calcification and stiffness, and thereby of the global hemodynamic load imposed on the LV; ii) the progression of myocardial hypertrophy, fibrosis, and dysfunction, iii) the loss in bone mineral density, and iv) the occurrence of adverse events in patients with AS. (2) Specifically, insulin resistance, the small, dense LDL and HDL phenotypes, enhanced oxidative stress & inflammatory state, and activation of the RAS act synergistically to: i) promote infiltration, retention, and modification of lipids within the valvular and arterial tissues, ii) enhance the inflammatory and osteoblastic response to oxidized lipids, iii) activate apoptosis of VICs and apoptosis-mediated calcification of the aortic valve and aorta, iv) promote osteoclastic activity and demineralization within the bone tissues (calcification paradox) (Figs. 1&6). These mechanisms predominate in the middle-aged patients, whereas imbalance in nuclear coregulators, alteration of adipokine system, dysregulation of mineral metabolism, and loss calcification inhibitors are the main contributing mechanisms in the elderly (Figs. 1,5,6). The contribution of visceral obesity to disease progression is more important in the patients with mildly or moderately calcified valves than in those with heavily calcified valves. In the latter, further progression of calcification and stenosis is predominantly influenced dysregulation of mineral metabolism. (3) The alteration of the myocardial energetic substrates and of the protein synthesis/degradation balance associated with visceral obesity and insulin resistance amplify the development of myocardial hypertrophy and fibrosis in response to pressure overload and accelerates the progression to myocardial dysfunction (Figs. 7&8). The adverse LV remodelling and fibrosis resulting from the synergistic effects of pressure overload and dysmetabolism predispose to the occurrence of paradoxical low flow AS and cardiac events.
The general objectives of the study are to elucidate the mechanisms implicated in the pathogenesis of AS and to identify the metabolic factors that determine the progression of: i) aortic valve calcification and stenosis; ii) aorta calcification and stiffness, iii) myocardial remodeling, fibrosis and dysfunction; and iv) clinical outcomes in the AS population.
The specific aims of the study are:
Condition | VALVULAR HEART DISEASE, Aortic Stenosis, Heart Valve Disease, aortic valve stenosis |
---|---|
Treatment | computed tomography, magnetic resonance imaging, Doppler-echocardiography, Fasting blood sample |
Clinical Study Identifier | NCT01679431 |
Sponsor | Laval University |
Last Modified on | 27 September 2021 |
,
You have contacted , on
Your message has been sent to the study team at ,
You are contacting
Primary Contact
Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.
Learn moreIf you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.
Learn moreComplete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.
Learn moreEvery year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.
Sign up as volunteer
Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!
No annotations made yet
Congrats! You have your own personal workspace now.