Estimation of Brain Biomechanics Using MRI

  • STATUS
    Recruiting
  • participants needed
    194
  • sponsor
    National Institutes of Health Clinical Center (CC)
Updated on 22 September 2022
imaging techniques
head up
Accepts healthy volunteers

Summary

Objective: In this study we will develop and apply imaging techniques to perform the first three-dimensional (3-D) measurements of brain biomechanics during mild head movement in healthy human subjects. Biomechanics is the application of mechanics, or the physical principles in action when force is applied to an object, to the anatomical structure and/or function of organisms. Such techniques will be invaluable for building computational models of brain biomechanics, understanding variability of brain biomechanics across individual characteristics, such as age and sex, and determining brain sub-structures at risk for damage when movement of the head is accelerated, such as during a traumatic event.

Study Population: Measurements will be performed on 90 healthy men and women aged 18-65.

Design: We will build upon the model pioneered by our collaborator, Dr. Philip Bayly. The model places a human subject in a magnetic resonance (MR) scanner with one of two head support units that allows a specific range of motion. Each head support is latched such that it can be released by the subject, and results in either a rotation of the head of approximately 30 degrees or a flexion-extension of the head of approximately 4 degrees. Although both supports are weighted so that the motion is repeatable if the subject is relaxed, the subject can easily counteract the weight. The resulting acceleration/deceleration is small (in the range of normal activities, such as turning one's head during swimming) and has been validated and used in other human investigations of brain biomechanics. The subject repeats the motion multiple times during the MR scan under their own volition and desired pace to measure motion of the head and brain.

Outcome measures: This project is a pilot study evaluating the potential of extracting three-dimensional estimates of brain deformation, such as strain measurements, using MR imaging. A primary outcome of this project will be a fast MR acquisition sequence for measuring 3-D brain deformation. The sequence will be evaluated by applying the protocol to human subjects, followed by preliminary quantification of the reproducibility and stability of deformation measurements.

Description

Objective

In this study we will develop and apply imaging techniques to perform the first three-dimensional (3-D) measurements of brain biomechanics during mild head movement in healthy human subjects. Biomechanics is the application of mechanics, or the physical principles in action when force is applied to an object, to the anatomical structure and/or function of organisms. Such techniques will be invaluable for building computational models of brain biomechanics, understanding variability of brain biomechanics across individual characteristics, such as age and sex, and determining brain sub-structures at risk for damage when movement of the head is accelerated, such as during a traumatic event. Using the developed imaging techniques above, we will acquire a sufficient number of data sets to create templates of the average brain response and stiffness based on age and sex. Anonymized raw and processed data will be made publicly available to improve computational models of brain biomechanics.

Study Population

Measurements will be performed on 194 healthy men and women aged 18-65.

Design

We will build upon the model pioneered by our collaborator, Dr. Philip Bayly. The model places a human subject in a magnetic resonance (MR) scanner with one of two head support units that allows a specific range of motion. Each head support is latched such that it can be released by the subject, and results in either a rotation of the head of approximately 30 degrees or a flexion-extension of the head of approximately 4 degrees. Although both supports are weighted so that the motion is repeatable if the subject is relaxed, the subject can easily counteract the weight. The resulting acceleration/deceleration is small (in the range of normal activities, such as turning one's head during swimming) and has been validated and used in other human investigations of brain biomechanics. The subject repeats the motion multiple times during the MR scan under their own volition and desired pace to measure motion of the head and brain. Additionally, we will use a type of MRI called magnetic resonance elastography (MRE), which measures brain motion in response to mild head vibration, to investigate brain stiffness.

Outcome measures

This project is a study evaluating the potential of extracting three-dimensional estimates of brain deformation, such as strain measurements and stiffness, using MR imaging. A primary outcome of this project will be MRI techniques for characterizing 3-D brain biomechanics. The techniques will be evaluated by applying the protocol to human subjects, followed by preliminary quantification of the reproducibility and stability of deformation and stiffness measurements. Acquired data will be made publicly available for use by the research community.

Details
Condition Healthy Volunteer, Traumatic Brain Injury, Brain Mapping, Craniocerebral Trauma, Magnetic Resonance Imaging
Clinical Study IdentifierNCT01633268
SponsorNational Institutes of Health Clinical Center (CC)
Last Modified on22 September 2022

Eligibility

Yes No Not Sure

Inclusion Criteria

Between 18 and 65 years of age
Able to provide written informed consent
Able to lie flat for up to 2 hours
Able to move head up to 220 times within 45 minutes without discomfort
Good general health based on History and Physical (H&P) or History and Assessment (H&A)

Exclusion Criteria

Contra-indications to MRI scanning without contrast based on RADIS department MRI safety questionnaire
Pregnancy
Inner ear problems causing vertigo
History of spinal cord injury, head injury or other musculoskeletal condition that may result in an aversion to or difficulty with turning one s head multiple times in succession
Claustrophobia (no sedation is permitted under this protocol)
Weight more than 250 lbs
Height greater than 6'4
All employees/staff supervised by the Principle Investigator or Lead Associate Investigator are excluded from participation
Clear my responses

How to participate?

Step 1 Connect with a study center
What happens next?
  • You can expect the study team to contact you via email or phone in the next few days.
  • Sign up as volunteer to help accelerate the development of new treatments and to get notified about similar trials.

You are contacting

Investigator Avatar

Primary Contact

site

0/250

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Browse trials for

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer

user name

Added by • 

 • 

Private

Reply by • Private
Loading...

Lorem ipsum dolor sit amet consectetur, adipisicing elit. Ipsa vel nobis alias. Quae eveniet velit voluptate quo doloribus maxime et dicta in sequi, corporis quod. Ea, dolor eius? Dolore, vel!

  The passcode will expire in None.
Loading...

No annotations made yet

Add a private note
  • abc Select a piece of text from the left.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.
Add a private note