• SKIP TO CONTENT
  • SKIP NAVIGATION
  • Patient Resources
    • COVID-19 Patient Resource Center
    • Clinical Trials
    • Search Clinical Trials
    • Patient Notification System
    • What is Clinical Research?
    • Volunteering for a Clinical Trial
    • Understanding Informed Consent
    • Useful Resources
    • FDA Approved Drugs
  • Professional Resources
    • Research Center Profiles
    • Clinical Trial Listings
    • Market Research
    • FDA Approved Drugs
    • Training Guides
    • Books
    • eLearning
    • Events
    • Newsletters
    • JobWatch
    • White Papers
    • SOPs
    • eCFR and Guidances
  • White Papers
  • Trial Listings
  • Advertise
  • COVID-19
  • iConnect
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Home » Inovio, U.S. Army receive $3.5M biodefense grant for mass vaccination device

Inovio, U.S. Army receive $3.5M biodefense grant for mass vaccination device

April 12, 2013
CenterWatch Staff

Inovio Pharmaceuticals has been selected to receive a $3.5 million grant from the National Institute of Allergy and Infectious Diseases (NIAID) to advance the development of its next generation DNA vaccine delivery device capable of simultaneously administering multiple synthetic vaccines via skin surface electroporation.

Inovio is collaborating with Dr. Connie Schmaljohn, chief scientist at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The goal of the public/private partnership is to develop a device that would facilitate rapid vaccination of U.S. troops stationed around the world against multiple infectious diseases and protect civilian populations from pandemic threats.

“This new device would provide a means to rapidly and painlessly deliver multiple vaccines simultaneously to large groups of people,” said Dr. J. Joseph Kim, Inovio's president and CEO. “This collaboration builds on Inovio's strong relationship with Dr. Schmaljohn and her team at USAMRIID in which Inovio is bringing medical innovation to several biodefense efforts. Moreover, the advancements from this project will enable rapid and efficient delivery of Inovio's SynCon vaccines for universal flu, HIV and other infectious diseases on a mass scale."    

The Inovio team of researchers has been collaborating with USAMRIID scientists to advance a DNA vaccine for the Lassa virus, which the DOD has designated as a "Category A" pathogen. In previous testing, an optimized DNA vaccine for the Lassa virus delivered by surface electroporation demonstrated complete protection against a virus challenge in both guinea pig and non-human primate disease models. Although prior results are highly encouraging and electroporation delivery is very tolerable from a patient perspective, improvements are still needed to make the technology more suitable for multiple vaccine administrations and mass vaccinations.

This NIAID grant builds on a 2011 Small Business Innovation Research Grant in which Inovio demonstrated a delivery device that was designed to deliver two separate DNA vaccines simultaneously. In this new program, Inovio will develop the multi-vaccine electroporation delivery device to address biodefense vaccine targets—notably to advance the Lassa virus vaccine through to clinical studies.

The research effort will investigate the novel simultaneous delivery of multiple DNA vaccines — final testing will use the Lassa virus and other arenaviruses—at distinct spatial sites while avoiding immune interference between vaccines. In addition, this new device platform could significantly increase the dose of vaccine delivered at one time which is a current limitation in vaccine delivery to the skin. The new skin surface device resulting from this research will leverage Inovio's latest surface DNA vaccine delivery technology, based on the company's proprietary electroporation delivery platform which uses millisecond electrical pulses to dramatically improve cellular uptake of the vaccine and resulting immune responses. Inovio vaccines delivered with electroporation devices for cancer and infectious diseases have previously demonstrated best in class T-cell and antibody responses in clinical studies.

Upcoming Events

  • 24May

    Powering an Effective Oversight Strategy with Clinical and Operational Insights

  • 25May

    2022 WCG Avoca Quality & Innovation Summit: Own the Future

  • 28Jun

    Effective Root Cause Analysis and CAPA Investigations for the Life Sciences

  • 16Oct

    WCG MAGI's Clinical Research Hybrid Conference - 2022 West

Featured Products

  • Spreadsheet Validation: Tools and Techniques to Make Data in Excel Compliant

    Spreadsheet Validation: Tools and Techniques to Make Data in Excel Compliant

  • Surviving an FDA GCP Inspection

    Surviving an FDA GCP Inspection: Resources for Investigators, Sponsors, CROs and IRBs

Featured Stories

  • Protocol-360x240.png

    Avoid Deviations by Making Protocol Review a Team Effort

  • SelectionProcess-360x240.png

    Give Us a Voice: Sites Clamor for a Say on Vendor Selection

  • Convince-360x240.png

    Use Data and Details to Convince Site Leadership to Add Staff

  • AsktheExpertsBadge-360x240.png

    Ask the Experts: Listing Trial Staff and Others on the Statement of Investigator

Standard Operating Procedures for Risk-Based Monitoring of Clinical Trials

The information you need to adapt your monitoring plan to changing times.

Learn More Here
  • About Us
  • Contact Us
  • Privacy Policy
  • Do Not Sell My Personal Information

Footer Logo

300 N. Washington St., Suite 200, Falls Church, VA 22046, USA

Phone 617.948.5100 – Toll free 866.219.3440

Copyright © 2022. All Rights Reserved. Design, CMS, Hosting & Web Development :: ePublishing