• SKIP TO CONTENT
  • SKIP NAVIGATION
  • Patient Resources
    • COVID-19 Patient Resource Center
    • Clinical Trials
    • Search Clinical Trials
    • Patient Notification System
    • What is Clinical Research?
    • Volunteering for a Clinical Trial
    • Understanding Informed Consent
    • Useful Resources
    • FDA Approved Drugs
  • Professional Resources
    • Research Center Profiles
    • Clinical Trial Listings
    • Market Research
    • FDA Approved Drugs
    • Training Guides
    • Books
    • eLearning
    • Events
    • Newsletters
    • White Papers
    • SOPs
    • eCFR and Guidances
  • White Papers
  • Trial Listings
  • Advertise
  • COVID-19
  • iConnect
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Home » Scientists find 3D structure of key drug target for diabetes

Scientists find 3D structure of key drug target for diabetes

July 24, 2013
CenterWatch Staff

An international team led by scientists at The Scripps Research Institute (TSRI), an independent, nonprofit organization focused on research in the biomedical sciences, has determined and analyzed the three-dimensional atomic structure of the human glucagon receptor. The receptor, found mainly on liver and kidney cells, helps regulate glucose levels in the bloodstream and is the target of potential therapeutic agents for type 2 diabetes.

"Our data should change the current view of how drugs are designed with this and related receptors," said Fai Yiu Siu, Ph.D., TSRI research associate and first study author.

The study was reported July 17 in an advance online edition of the journal Nature, alongside a British laboratory's structural study of another member of the same class of receptors, known as "class B" G protein-coupled receptors (GPCRs).

"Understanding how the glucagon receptor interacts with and binds to its partners will provide new information on how cells maintain sugar levels, possibly aiding the development of treatments for glucose-related disorders like type 2 diabetes," said Jean Chin, Ph.D., of the NIH’s National Institute of General Medical Sciences, which partially funded the research. "Because the receptor is the first in its class of membrane proteins to be structurally determined, the work may advance studies of similarly shaped, medically important but often difficult to characterize molecules."

"This work involved a very fruitful international collaboration in which researchers in the U.S., China and Europe worked closely together for more than two years to uncover the key differences in this subfamily of GPCRs," said Raymond C. Stevens, Ph.D., TSRI professor and the study’s senior author.

GPCRs are the largest family of cellular receptors in humans and other animals. More than a third of all modern pharmaceuticals target these receptors, either to boost or block their activities. Determining the structural details of individual GPCRs and how they interact with binding partners has been a major goal of much biological research.

Over the past decade, the Stevens and Cherezov laboratories at TSRI have pioneered techniques to express, stabilize and induce these inherently flexible receptor proteins to form regular crystalline solids from which their structures can be derived using a technique called X-ray crystallography. The crystal structures the team has "determined" so far include the groundbreaking crystallization and structure determination work of the β2 adrenergic receptor, followed by the A2A adenosine receptor (active and inactive state), S1P1 receptor, CXCR4 chemokine receptor, D3 dopamine receptor, histamine H1 receptor, kappa opioid receptor, nociception receptor, serotonin receptors 5HT1b and 5HT2b and the smoothened receptor (a class F receptor)—all well-known and important therapeutic targets to treat a variety of human diseases. Each of these receptor systems is being followed up by careful structure-function studies including NMR in collaboration with the TSRI Wüthrich laboratory to fully understand how they work.

Other than the class F smoothened receptor, all the GPCRs solved to date are known as "class A" GPCRs for their common structural and protein-sequence features. More challenging for structural biologists has been the class B GPCRs, which include the glucagon receptor as well as several closely related protein molecules.

"These receptors are very different from the class A receptors since they have key functional domains both embedded in and outside of the cellular membrane, so the lessons we've learned from the class A have not been entirely applicable," said Vsevolod Katritch, TSRI assistant professor of molecular biology and study co-author.

The glucagon receptor and related GLP1 and GIP receptors were high on the list of desired class B GPCR structures due to their potential as a drug targets for diabetes and their similarity to other receptors involved in endocrine and metabolic disorders. When activated by the hormone glucagon during fasting, the glucagon receptor triggers the release into the bloodstream of stored glucose from the liver and other sites. Modulating the glucagon receptor's activity thus offers a way to control blood sugar.

Other laboratories have reported finding the crystal structure of the small soluble part of the glucagon receptor, known as the extracellular domain. But the structure of the receptor's midsection, normally anchored in the host cell's membrane where the signal is transmitted, has been elusive. Although it is also involved in binding to glucagon, this "transmembrane domain" of the receptor—which resembles a jumble of seven loose springs—tends to resist the crystallization that is needed for structure determination.

Siu was able to obtain crystallography-worthy crystals of the receptor's transmembrane domain. Borrowing one key innovation from class A GPCR studies, he used a "fusion protein" to hold the molecule together. The resulting structure, determined to a resolution of 3.4 Angstroms, turned out to have two key features that differ from those seen in class A GPCRs. One is an unusually elongated, stalk-like segment that connects the transmembrane region to the outermost, knob-like domain of the receptor. The other is an unusually large "pocket" within the transmembrane region where the N-terminal part of the glucagon peptide is expected to dock.

"If you're trying to get a drug molecule to fit snugly into that pocket, you might need a larger one than those that are normally used to target class A GPCRs," said Siu. He added that several pharmaceutical companies have been trying to develop drugs that specifically target this and related receptors. "Other than peptides, maybe the drugs they're designing need to be bigger and not conform to the usual characteristics of other drugs."

Upcoming Events

  • 16Feb

    Fundamentals of FDA Inspection Management: Reduce Anxiety, Increase Inspection Success

  • 21May

    WCG MAGI Clinical Research Conference – 2023 East

Featured Products

  • Spreadsheet Validation: Tools and Techniques to Make Data in Excel Compliant

    Spreadsheet Validation: Tools and Techniques to Make Data in Excel Compliant

  • Surviving an FDA GCP Inspection

    Surviving an FDA GCP Inspection: Resources for Investigators, Sponsors, CROs and IRBs

Featured Stories

  • SurveywBlueBackground-360x240.png

    Sites Name Tech Acceptance as Essential Factor in Selection of Sponsors, Survey Finds

  • TrendsInsights2023-360x240.png

    WCG Clinical Research Trends and Insights for 2023, Part Two

  • TimeMoneyEffort-360x240.png

    Time is Money and So Is Effort, Budgeting Experts Say

  • TrendsInsights2023A-360x240.png

    WCG Clinical Research Trends and Insights for 2023, Part Three

Standard Operating Procedures for Risk-Based Monitoring of Clinical Trials

The information you need to adapt your monitoring plan to changing times.

Learn More Here
  • About Us
  • Contact Us
  • Privacy Policy
  • Do Not Sell or Share My Data

Footer Logo

300 N. Washington St., Suite 200, Falls Church, VA 22046, USA

Phone 617.948.5100 – Toll free 866.219.3440

Copyright © 2023. All Rights Reserved. Design, CMS, Hosting & Web Development :: ePublishing