
Home » Institute of Human Virology awarded $14.4M for HIV vaccine research
Institute of Human Virology awarded $14.4M for HIV vaccine research
August 23, 2016
The Institute of Human Virology (IHV) at the University of Maryland School of Medicine has been awarded a $14.4 million grant from the U.S. National Institute of Allergy and Infectious Diseases (NIAID) to tackle a significant scientific global challenge in HIV vaccine research—the inability to produce long-lasting antibodies to protect against HIV infection.
“Since our group co-discovered HIV as the cause of AIDS in the early 1980’s, I have long stated that any successful vaccine would need to block HIV infection from the start given the nature of retroviruses and HIV’s aggressive replication cycle,” said Robert C. Gallo, M.D., The Homer & Martha Gudelsky Distinguished Professor of Medicine, director, Institute of Human Virology, University of Maryland School of Medicine. “In order to do this, we must have persistent antibodies to protect against HIV.”
HIV vaccine development presents unprecedented challenges on multiple levels, a reality, often overlooked, that cannot be overstated. The chief challenge is that HIV is a human retrovirus that replicates by irreversibly inserting its genes into the host genome. Thus, HIV infection is established permanently in a matter of days or perhaps even hours (1–6), and it cannot be cleared by primary or anamnestic responses that occur after exposure. In addition to integrating into the host genome, a second unique challenge is that HIV replicates in CD4+ T cells that are key players in protective immunity not only to HIV itself but also too many other pathogens. These central features distinguish the path to an HIV vaccine from the traditional design principles that led to successful vaccines against other infectious agents.
“While we study the antibody sustainability problem, we need to activate T cells that fight HIV,” said George Lewis, Ph.D., professor of Microbiology and Immunology, director Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine. “However, T cells are also the very cells that HIV infect and kill. Thus, there is a fine balance we must reconcile so that we can examine and produce long-lasting antibodies for an effective vaccine.”
Last fall, IHV launched phase I clinical trials of a novel HIV vaccine candidate developed by Drs. Gallo, Lewis, DeVico and Tim Fouts, Ph.D. of Baltimore-based Profectus Biosciences, a spinoff company from IHV. The candidate immunogen, denoted as the Full-Length Single Chain (FLSC), is designed to elicit strong protective antibody responses across the spectrum of HIV-1 strains. The IHV team will utilize the FLSC as a model system with the goal of finding ways to improve the efficacy and durability of all HIV vaccines.
“We have noticed an unusual, but not uncommon, phenomenon in HIV’s envelope protein that affects the sustainability of antibodies,” said Anthony DeVico, Ph.D., professor of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine. “We need to learn why this is happening so we can promote durability in our vaccine’s antibody response against HIV.”
“We believe this antibody durability challenge is solvable,” said grant collaborator Guido Silvestri, M.D. at the Yerkes National Primate Research Center of Emory University. “Importantly, funding sources and collaborators such as NIAID and The Bill & Melinda Gates Foundation are critical partners in our quest to solve this complex scientific challenge and we are grateful for their continued support, among others.”
Formed in 1996 as a partnership between the State of Maryland, the City of Baltimore, the University System of Maryland and the University of Maryland Medical System, IHV is an institute of the University of Maryland School of Medicine and is home to some of the most globally-recognized and world-renowned experts in all of virology. The IHV combines the disciplines of basic research, epidemiology and clinical research in a concerted effort to speed the discovery of diagnostics and therapeutics for a wide variety of chronic and deadly viral and immune disorders - most notably, HIV the virus that causes AIDS.
Upcoming Events
-
14Apr