Common antifungal drug decreases tumor growth, shows promise as cancer therapy

Wednesday, August 22, 2012 10:18 AM
An inexpensive antifungal drug, thiabendazole, slows tumor growth and shows promise as a chemotherapy for cancer, according to scientists in the College of Natural Sciences at The University of Texas at Austin.
 
Hye Ji Cha, Edward Marcotte, John Wallingford and colleagues found that the drug—an FDA-approved, generic drug used for 40 years as an antifungal agent—destroys newly established blood vessels, making it a "vascular disrupting agent." Their research was published in the journal PLOS Biology.
 
In trials using mice, the researchers found that thiabendazole decreased blood vessel growth in fibrosarcoma tumors by more than a half. Fibrosarcomas are cancers of the connective tissue, and they are generally heavily vascularized with blood vessels. Inhibiting blood vessel, or vascular, growth can be an important chemotherapeutic tool because it starves tumors. Tumors induce new blood vessel formation to feed their out-of-control growth. The drug also slowed tumor growth.
 
"This is very exciting to us, because in a way we stumbled into discovering the first human-approved vascular disrupting agent," said Marcotte, professor of chemistry. "Our research suggests that thiabendazole could probably be used clinically in combination with other chemotherapies."
 
In a previous study, Cha, a graduate student in cell and molecular biology at the university, tested the drug in developing frog embryos, which are fast growing vertebrates in which scientists can watch blood vessel growth in living animals. Cha found that frog embryos grown in water with the drug either didn't grow blood vessels or grew blood vessels that were then dissolved away by the drug. Interestingly, when the drug was removed, the embryos' blood vessels grew back.
 
Cha then tested the drug on human blood vessel cells growing in Petri dishes, finding that the drug also inhibited their growth. Finally, she tested the drug on fibrosarcoma tumors in mice and found that it reduced blood vessel growth in the tumors as well as slowed the tumors' growth.
 
"We didn't set out to find a vascular disrupting agent, but that's where we ended up," said Wallingford, associate professor of developmental biology and Cha's graduate advisor with Marcotte. "This is an exciting example of the power of curiosity-driven research and the insights that can come from blending disciplines in biology."
 
The scientists' goal is now to move the drug into clinical trials with humans. They are talking with clinical oncologists about next steps.
 
"We hope the clinical trials will be easier because it is already approved by the FDA for human use," said Marcotte.
Share:          
CLINICAL TRIAL RESOURCES

Search:

NEWS ONLINE ARCHIVE

Browse by:

CWWeekly

September 30

Novartis-Walgreens pilot study blurring the line between retail pharmacy, investigative site

CISCRP to launch traveling science museum exhibit to demystify clinical trial participation

Already a subscriber?
Log in to your digital subscription.

Subscribe to CWWeekly.

The CenterWatch Monthly

October

New growth and decline in Asia clinical trials
South Korea, Japan, China see big growth in 1572s, while India posts huge drop

Harnessing Big Data to transform clinical trials
From protocol to patient recruiting, data analytics can yield valuable insights

Already a subscriber?
Log in to your digital subscription.

Purchase the October issue.

Subscribe to
The CenterWatch Monthly.

The CenterWatch Monthly

September

Sponsors look to collaborate on comparator drugs
Co-therapies, comparators are in 60% of studies, cost $25m per company a year

Early adopters implement risk-based monitoring pilot programs
Experiments aim to offer long-term solutions, despite short-term uncertainties

Already a subscriber?
Log in to your digital subscription.

Purchase the September issue.

Subscribe to
The CenterWatch Monthly.

JobWatch centerwatch.com/jobwatch

Featured Jobs